

May 4, 2021

Housekeeping

- All lines are muted and video is disabled
- If you are dialed in via phone: *6 to mute and unmute
- If you are dialed in through your computer: Click on phone icon to mute and unmute
- Do not put your call on hold
- We will pause after each topic for questions / discussion
- Announce name and affiliation when speaking
- WebEx Chat and Raised Hand features are not monitored

Welcome & Agenda

```
2:05 - 2:10 Opening Remarks - JT Smith
2:10 - 2:20 Lessons Learned: Summer 2020 - Trevor Hines
2:20 – 2:40 Summer Resource Assessments
                  a. Generation - Eric Rodriguez
                  b. Transmission - Tamal Paul
2:40 - 3:00
             Readiness
                  a. Summer Readiness – Joe Riels, Cooperative Energy
                  b. Drills & Training - Anita Hurst
3:00 - 3:10
             Market Capacity Emergency Procedures - Mike Carrion
3:10 - 3:20
             RAN filings - Davey Lopez
3:20 - 3:30
             Guest Speaker - Tim Ponseti, SERC
Q&A
```


Summer 2020: Lessons Learned

Trevor Hines MISO South Region

MISO reliably managed through the summer of 2020, experiencing abnormal weather events that highlighted the benefits of stakeholder drills and operator training

Lessons learned from the summer of 2020 provide additional input into the Reliability Imperative

LESSONS LEARNED

MISO and members must align expectations for price formation, cost allocation, customer communication, and roles and responsibilities to support the shared goal of system reliability

Current software is limited in its ability to implement the needed pricing in response to events like Hurricane Laura, requiring significant manual work

More robust preparation for severe weather events and more sophisticated tactical annual hurricane drills will help in future support for members

Better alignment is needed between MISO's Max Gen steps and NERC's Energy Emergency Alerts

RELIABILITY IMPERATIVE

Market Redefinition

Market System Enhancement

Long Range Transmission Planning

Operations of the Future

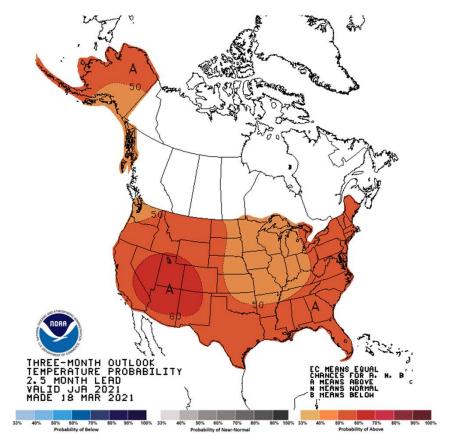
Questions?

Contact Info

Trevor Hines thines@misoenergy.org

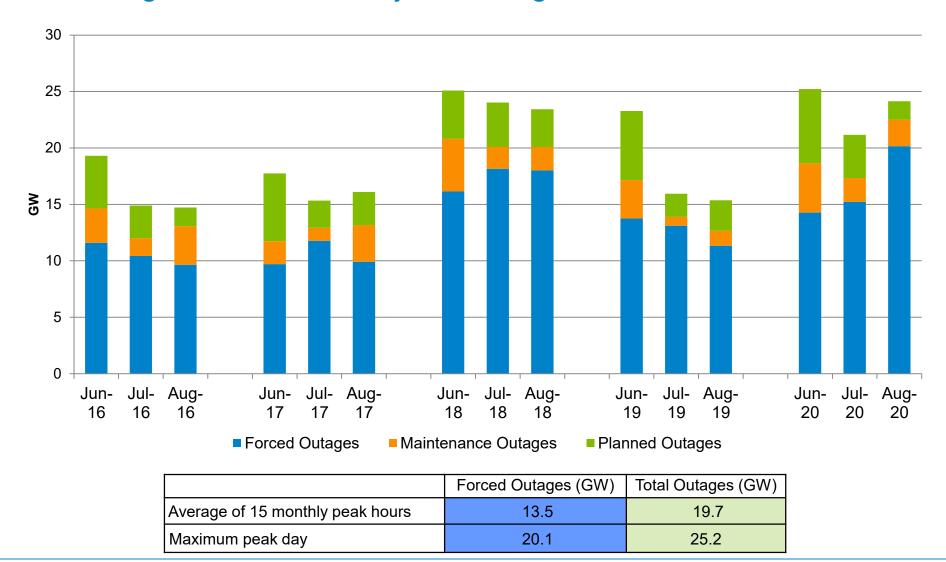
Summer Resource Assessment: Generation

Eric Rodriguez
MISO Resource Adequacy


Summary

- Under typical weather and outage conditions, adequate resources are projected to be available to meet expected load this summer
- A combination of both a high load and a high outage scenario may require declarations of emergency procedures, if insufficient availability of non-firm energy resources

146 GW of resources are projected to cover demand and outages for Summer 2021 with a moderate probability for warmer than normal forecasted temperatures throughout the MISO footprint


MISO Preliminary 2021 Summer Forecast					
Summer Coincident Peak Forecast + Transmission Losses	122 GW				
Total Projected Available Capacity*	146 GW				

All-time Summer Peak Load: 127 GW on July 20, 2011

NOAA forecasts a 33-50% chance for below average levels of precipitation in LRZs 1-3 & a 33% chance for above average levels in the southeast pocket of the MISO footprint

Cumulative generation outages of Summer 2020 during monthly peak remain high relative to the 5-year average

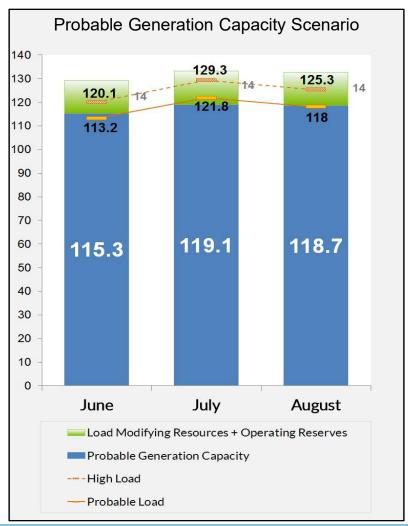
Range of uncertainty in generation availability and load forecasts capture risks utilized in the Summer 2021 scenarios

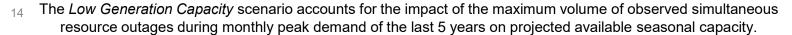
Generation

Probable Generation Capacity

- Removes 5-year average volume of resource outages¹ during monthly peak (planned, maintenance, and forced)
- Low Generation Capacity (High Outage)
 - Removes 5-year maximum volume of resource outages during monthly peak (planned, maintenance, and forced), typically because of non-normal weather conditions

Load


- Probable Load Forecast
 - 50/50 forecast², provided by Market Participants
- High Load Forecast
 - · 90/10 forecast³



A combination of both high load and high outages could drive operational challenges for the Summer 2021 season

Summer 2021 Resource Adequacy Projections – System-wide

Questions?

Contact Info

Eric Rodriguez erodriguez@misoenergy.org

Summer Resource Assessment: Transmission

Tamal Paul Ritam Misra MISO Engineering

The transmission limitations in the system are within the expected norms for the upcoming Summer

Steady-State AC Contingency Analysis

- Evaluate the effects of simple and complex contingencies on the MISO footprint and Tier-1 areas
- IROL review
- No major constraints that do not have mitigations for this summer

Regional Directional Transfer (RDT Studies)

- Evaluate the impact of RDT on MISO's neighboring entities
- Some RDT flowgates are already in MISO processes
- 8 additional RDT flowgates not previously in MISO's processes found

Load pocket studies

- Evaluate import capability for four MISO load pockets in the South: Amite South, DSG, WOTAB, and Western load pockets
- Study still ongoing

Steady State AC Contingency Analysis – Contingencies Evaluated

Category P1 > 100 kV

- P1.1 fault generator (>50 MW)
- P1.2 fault transmission circuit
- P1.3 fault transformer
- P1.4 shunt device
- P1.5 block single dc pole

P1 Contingency Files are submitted by Stakeholders

Gas-Electric Contingencies

No major constraints that do not have mitigations for this summer

RDT Flowgate Impact Studies

Criterion:

Regional Directional Transfers will be considered to impact flowgates if one or more of the flowgate criteria is met.

- 1. Single monitored element flowgate with \geq 5% TDF
- 2. Double monitored element flowgate \geq 7.5% TDF
- 3. Three monitored element flowgate \geq 10% TDF
- Four or more monitored elements only by mutual agreement between MISO RC and a neighboring RC
- 5. 25% or more flow of a single-monitored element flowgate limit as a result of RDT and with a minimum of 1.5% TDF.

Results:

- 87 RDT flowgates were identified; 79 already identified from previous studies and in existing MISO processes
- 8 additional flowgates not previously identified sent to MISO Operations

Import Limits Study for MISO Load Pockets

Criterion:

- 1. Simulate peak load conditions for four MISO load pockets as shown below:
 - Amite South
 - DSG (Downstream of Gypsy)
 - WOTAB
 - Western load pocket
- 2. Perform transfer studies into these load pockets
- 3. Identify import limits for the load pockets

Results:

Study is still ongoing; results pending

Questions?

Contact Info

Tamal Paul tpaul@misoenergy.org

Ritam Misra rmisra@misoenergy.org

Raja Thappetaobula

RThappetaobula@misoenergy.org

Summer Readiness

Joe Riels, Cooperative Energy

Anita Hurst, MISO Technical Development

Cooperative ENERGY

2021 Summer Preparation

Joe Riels Director System Operations

Cooperative Energy Overview

- Cooperative Energy / G&T Cooperative founded in 1941
- 2,500 MW Resources & 1,800 Miles of 230/161/115/69 kV Transmission with 1,754 MW LBA peak load
- Operate across two BAAs and three TOPs
- Registered as GOP, TOP, BA (LBA with MISO)
- Joined MISO in 12/2013 as part of the South Integration

How do we prepare?

Transmission Outage Maintenance & Planning

Monthly meetings focused on construction plans and maintenance needs.

Focused on timing requirements for approving outages.

Ensure outages are in CROW!

Generation Outage Planning

Weekly updates provided on a 3-yr rolling bases.

Ensure outages are in CROW!

Review MISO Maintenance Margin, down to the subregion.

Anticipated Weather Conditions

National Weather Service, Weather Tap, Coastal Weather Research Center.

How do we prepare?

Annual Summer Operating Study

Series of solved load flow cases of contingencies with known assumptions occurring at peak summer conditions.

Covers system improvements, topology changes, scheduled outages.

Recommends course of actions to follow.

Delivered to System Operators in the Spring by Operations Planning via a NERC ILA approved CEH course

Gives System Operators an opportunity to review expected summer conditions and ask questions concerning possible solutions to anticipated problems during FTLO conditions.

How do we prepare?

Load Forecast

- Dependent on weather.
 - Pattern Recognition Technologies

Staffing & Training

Retirements of key employees

System Operator trainees to System Operator

Emergency plans updated, and employees are knowledgeable

Energy Management System & Corporate IT Review

Meet and talk to these groups concerning any scheduled work during the summer

Opportunities to coordinate...

Hurricane Drill

Market Capacity Emergency Drill

Power System Restoration Drill


Situational Awareness

Monitor Weather Conditions

LBA Participation morning RC call

Participation in MISO Working Groups

 Reliability Subcommittee, Resource Adequacy Subcommittee, System Restoration and Reliability Training Working Group, Balancing Authority Committee, Reliable Operations Working Group, EOP Workshops

Summer Readiness: Drills & Training

Anita Hurst MISO Training

Summer brings many challenges that must be closely monitored

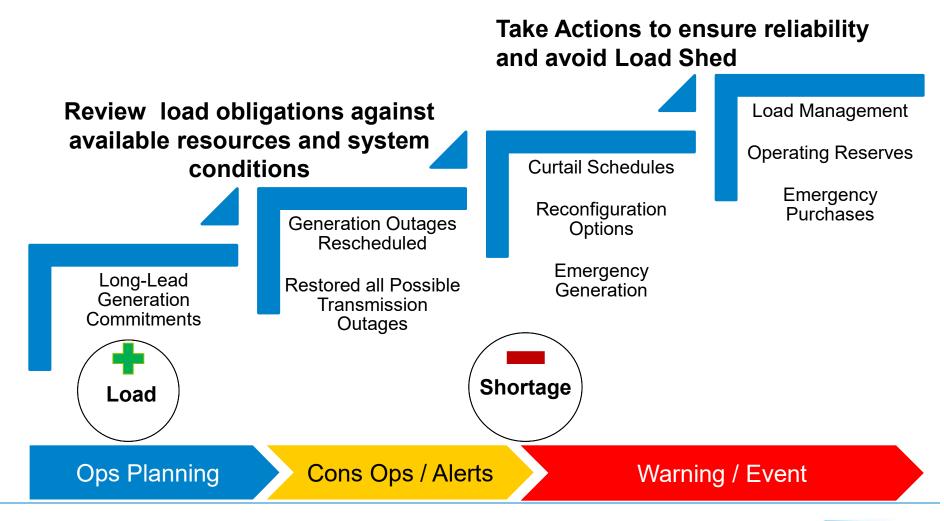
Abnormal Weather

Limited transfer capability

Severe Weather Patterns

Forced Outages

Seasonal Maintenance


Transmission Congestion

Abnormal Temperatures

Higher than average load

MISO prepares for extreme conditions in advance. In Real-Time, unplanned outages and other unknowns may require additional actions

MISO provides opportunities to drill on emergency process with members to *ensure* readiness in all operating situations

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
	 LMR DRILL: 2nd Tuesday of each month @ 10:00 EST MPs only LMM Drill: 2nd Tuesday of each month @ 10:00 EST LBAs only 	 XML DRILL: Last Wednesday of each month @ 13:00 EST LBAs only Firm Load Shed Drill: 1st Wednesday of each month @ 13:00 EST LBAs only 	EDR Drill: • 2 nd Thursday of each month @ 10:00 EST	

Power Restoration Drills: Two Drills held each Fall Market Capacity Emergency Drills: 6 Drills during Cycle 2 in April and May

Upcoming 2021 Market Capacity Emergency Drills

May 6, 13 & 20

May 2021

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1
3	4	5	6	7	8
10	11	12	13	14	15
17	18	19	20	21	22
24	25	26	27	28	29
31					
	3 10 17 24	3 4 10 11 17 18 24 25	3 4 5 10 11 12 17 18 19 24 25 26	3 4 5 6 10 11 12 13 17 18 19 20 24 25 26 27	3 4 5 6 7 10 11 12 13 14 17 18 19 20 21 24 25 26 27 28

- Target Audience: MISO Members (See Your Company Drill Coordinator for participation eligibility)
- Registration: Registration through the MISO Learning Center
- Platform: WebEx Only from 8:00 12:00 (EPT)
- Questions: Please contact <u>MISO-TechnicalTraining@misoenergy.org</u>

Early season forecasts call for an **above-normal** 2021 hurricane season

- Above average forecasted 2021 season due to:
 - Likely absence of El Niño, Tropical Atlantic Sea Surface temperatures
 are near their long-term averages, while Atlantic subtropical sea
 surface temperatures are much warmer than long-term average
 values.
- Hurricane Preparedness Week is May 9 15, 2021

Colorado State University is forecasting another above average tropical season					
	AVERAGE	FORECAST			
NAMED STORMS	14	17			
HURRICANES	7	8			
MAJOR HURRICANES	3	4			

Hurricane Readiness Drill Dates

Topics include:

- MISO Hurricane Action Plan
- 2020 Hurricane Season Review
- 2020 Member Lessons Learned
- Load Pockets
- Load Shed
- Transmission System Emergencies
- Neighbor Coordination

Dates: May 12 &19 Time: 8AM-5PM ET Location: WebEx

Registration: MISO Learning Center

Questions?

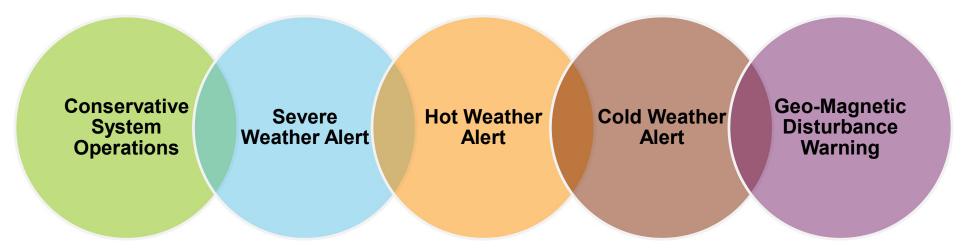
Contact Info

Anita Hurst ahurst@misoenergy.org

MISO Market Capacity Emergency Procedures with LMR Review

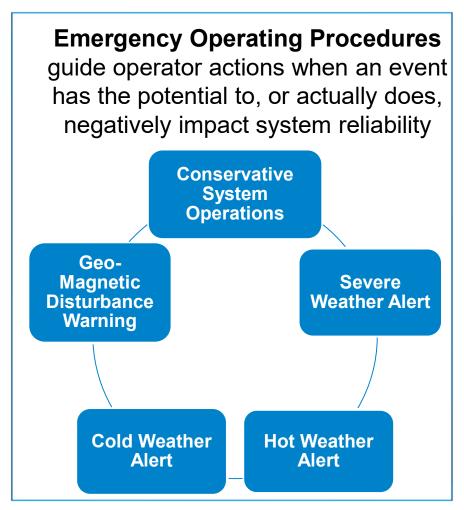
Mike Carrión MISO System Operations

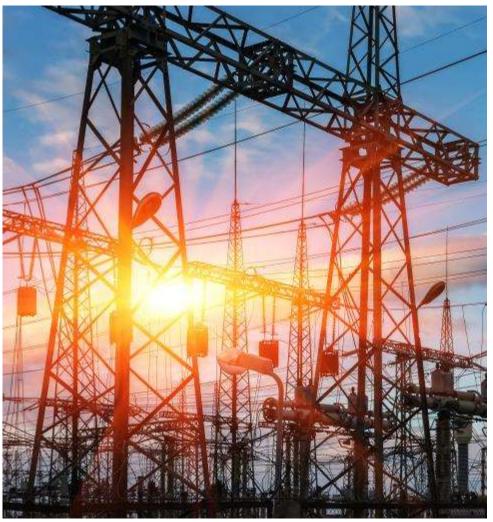
MISO Procedures


Conservative System Operations Procedure SO-P-NOP-00-449

Market Capacity
Emergency Procedure
SO-P-EOP-00-002

Conservative System Operations


 Five declarations are used to prepare operating personnel and facilities for extreme weather conditions or abnormal conditions that will, or have the potential to, impact the Bulk Electric System (BES):



- Allows MISO & regional operators to defer or cancel transmission or generation outages to increase transfer capability and capacity.
- Provide instructions for returning planned outages/maintenance equipment to service, if possible, in the impacted areas
- Suspend all work on critical computer systems
- Prepare for the implementation of Emergency Procedures

Operators use emergency procedures to ensure reliability and gain access to required resources

Market Capacity Emergency Procedure Steps

Capacity Advisory	 Advance notice of forecasted capacity shortage, requests Stakeholders update offer data 	2021	
 Alert	 Define boundaries/suspend maintenance, set Emergency Pricing Tier 0 Offer Floor 	Emergency Pricing Tier 0 Offer Floor	
Warning	 Schedule in External Resources, Curtail export transactions, Reconfiguration, and set Emergency Pricing Tier 1 Offer Floor 	Emergency Pricing Tier 1	
Step 1	 Commit Emergency Resources, Declare NERC EEA 1, Activate Emergency Limits 	Offer Floor	
Step 2	 Declare NERC EEA 2, Implement LMRs, LMMs Stage 1, Commit EDR Resources, Emergency Energy Purchases, Public Appeals, and set Emergency Pricing Tier 2 Offer Floor 		
Step 3	 Utilize Operating Reserves, and LMMs Stage 2 	Emergency Pricing Tier 2 Offer Floor	
Step 4	Reserve Call and Emergency Reserve Purchases		
 Step 5	 Declare NERC EEA 3, Firm Load Shed, and set LMPs and MCPs to the VOLL 		
Termination	Max Gen and, possibly, Capacity Advisory Termination		

New in

MISO introduced a "Capacity Advisory" in 2018 to address stakeholder requests for transparency of forecasted conditions without impact to operations

Goals:

- Inform MISO stakeholders and transmission operators of potentially tight capacity conditions
- Allow forward processes to assist in mitigating capacity shortfall

Summary:

Current NERC EEA Level = 0
Current MISO Max Gen Level = Capacity Advisory
Current Emergency Pricing Level = N/A

Reliability Actions:

The MISO Reliability Coordinator is declaring a Maximum Generation Capacity Advisory effective from 03/26/2019 10:20 EST until further notice.

The MISO Reliability Coordinator instructs the following:

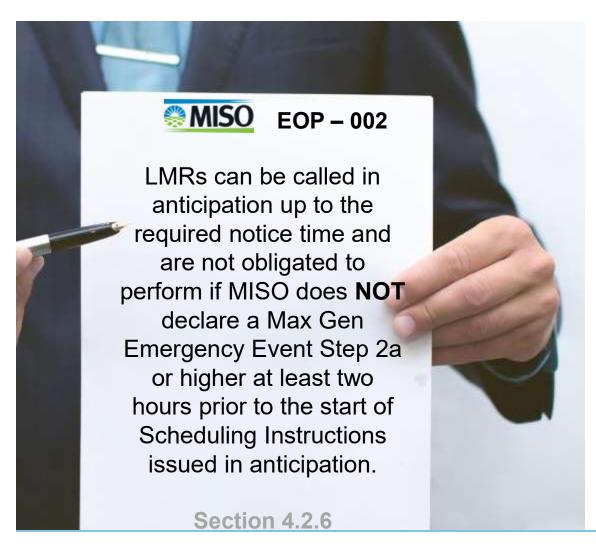
- Prepare to implement the MISO Market Capacity Emergency procedure and follow procedures for emergency conditions
- Ensure all market data is updated with best available information
- If notified by MISO, Implement LMRs
- Updated Generation Availability & Parameters can significantly impact forecasted Capacity Margin

Capacity Advisory Communication improves awareness around potential for advancement into Emergency Procedures

Conservative Operations: If conditions warrant, MISO will transition from normal operating conditions to Conservative Operations to prepare local operating personnel for a potential event, and to prevent a situation or event from deteriorating

Emergency Operations: Emergency Operating Procedures (EOPs) guide system operator actions when an event occurs on the electric system that has the potential to, or actually does, negatively impact system reliability. EOPs are communicated in escalating order as alerts, warnings, and events

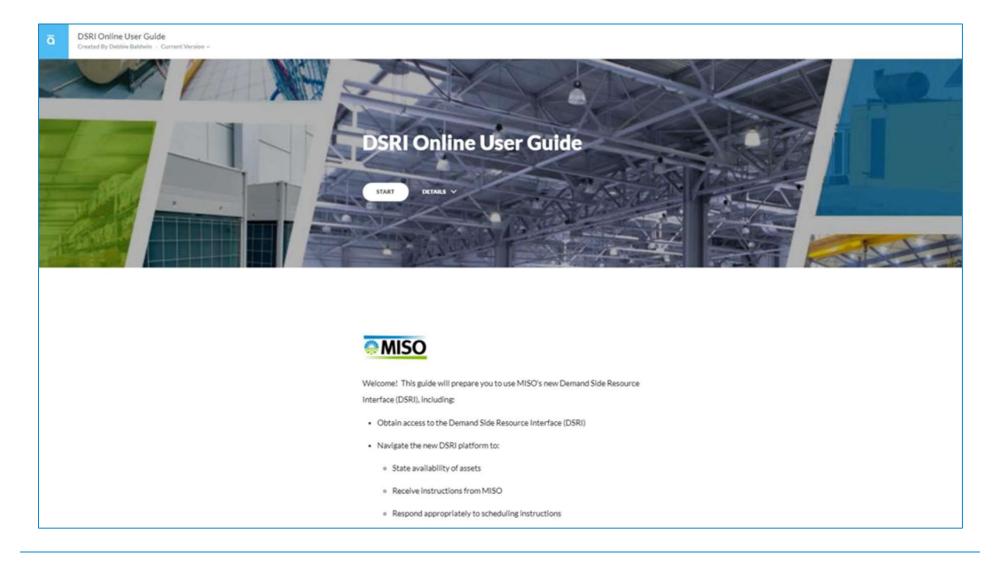
Capacity Advisory	MISO forecasts a potential capacity shortage Forecasted to have less than 5% All in Sufficiency % MBAA or sub-region. When relying on a significant amount of Capacity Returning from Outage. When developing conditions warrant an update/review by Stakeholders of their Offer Parameters
Hot or Cold Weather Alert	Extreme temperatures forecasted
Severe Weather Alert	Adverse weather conditions within the area
Conservative Operations Declaration	Reliability issues may be possible
Maximum Generation Alert	MISO forecasts a potential capacity shortage Forecasted to have less than 1% All in Sufficiency % MBAA. South Region is forecasted to have less than 500 MW plus Reserve Requirements. System conditions dictate a higher conservative margin during Day-Ahead studies and in Real-Time.
Maximum Generation Warning	MISO forecasts a potential capacity shortage Actual or forecasted reserves are less than required for the MBAA or sub-region.
Maximum Generation Event (Step 1) / EEA*1	Taking steps to preserve operating reserves
Maximum Generation Event (Steps 2, 3, 4) / EEA*2	Taking steps to preserve firm load
Maximum Generation Event (Step 5) / EEA*3	Actual event occurring - shed firm load and/or perform rolling brownouts or blackouts for defined area


2020 Changes to Load Modifying Resources (LMR) resulted in much more flexibility for MISO Real-Time System Operations

- LMRs submit monthly LMR
 Availability values to the MECT
 for each planning year
- LMRs are now required to be available in non-Summer seasons if capable
- MISO's Operators can issue Scheduling Instructions to LMRs in advance of anticipated Emergency events

At any stage, including Capacity Advisory, MISO can call on long lead LMR's in anticipation of a Capacity Emergency Event

MISO will have to declare a Max Gen Emergency Event step 2a at least 2 hours prior to the start time of the LMR Scheduling Instruction.


COMING SOON – Demand Side Resource Interface (DSRI) will be new destination for MPs to update LMR Availability

- Updated interfaces and browser compatibility (Chrome, Edge, Firefox, etc.)
- User requested enhancements and functionality
- Simple API structure for potential future development of other tool interactions
- Able to easily update and maintain accurate LMR
 Availability information for future Tariff accreditation changes
- ✓ Will go live July 1, 2021

DSRI Online User Guide and Training Workshops are coming soon and will be available prior to July 1, 2021

Questions?

Contact Info

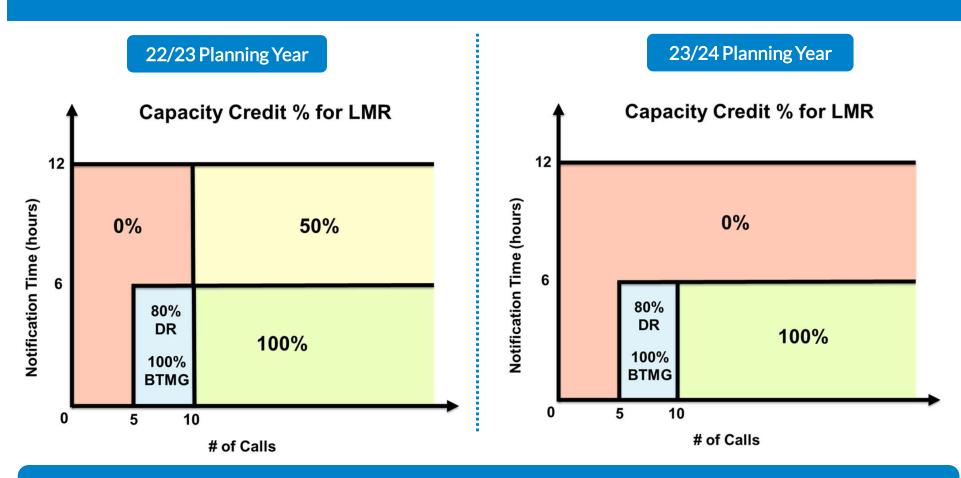
Mike Carrion mcarrion@misoenergy.org

Dustin Grethen dgrethen@misoenergy.org

Jeffrey Minks jminks@misoenergy.org

Resource Availability & Need (RAN) Filings

Davey Lopez MISO Resource Analytics



LMR Accreditation FERC Filing and Approval

- MISO filed LMR accreditation changes at FERC on 5/18/2020 under Docket #: ER20-1846-000
 - Based on the critical factors of notification times and call limits
 - Will begin in the 2022-2023 Planning Year
 - MISO's final LMR accreditation proposal reflected a delay by 1 year of the proposed changes, as many stakeholders requested, to provide sufficient time to adjust contracts and complete required state processes
- On August 14, the Commission issued an Order accepting the LMR accreditation filing, effective August 16, 2020, as requested
- MISO continues to discuss the Resource Adequacy Construct and Resource Accreditation at the Resource Adequacy Subcommittee (RASC) with a target filing date of September 2021

As requested, MISO revised the proposal, which provided a transition to allow stakeholders time to adequately prepare

MISO encourages stakeholders that can obtain reductions in notification times or increase call limits to do so prior to the 22/23 Planning Year, especially in LRZs that have greater reliance on LMRs

ICAP Deliverability Filings & Results

- Capacity Resources are quantified by applying forced outage rates to Installed Capacity values (ICAP) to calculate the Unforced Capacity value (UCAP) for the resource.
- In 2020, FERC accepted Tariff filings to enhance the deliverability requirements for Capacity Resources and related conversion of Capacity to Zonal Resource Credits (ZRCs) in MISO's Planning Resource Auction.
- Dockets ER19-1942 and ER20-2005
 addressed the deliverability and conversion rules applicable to conventional and intermittent resources respectfully.

Conventional ICAP

Approximately 300 units of conventional resources, considered not fully deliverable under this new policy, were able to obtain the necessary additional Transmission Service in order to near fully utilize (99%) the unforced capacity (46.5 GW) for Resource Adequacy on par with the previous auction (45.3 GW).

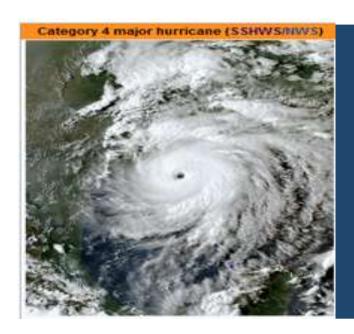
Intermittent ICAP

Intermittent resources considered not fully deliverable, 15.8% (600 MW) of unforced capacity was not converted into Zonal Resource Credits in this auction versus 13.2% (450 MW) in last year's auction, a difference of 150 MW or 0.1% of the footprint's PRMR.

Intermittent Deliverability ICAP

- Intermittent resources are required to demonstrate deliverability for conversion of UCAP to ZRCs in the PRA.
- Unlike with conventional where deliverability up to nameplate is required for full conversion, deliverability only up to the highest sampled observance (output during the top 8 annual peaks from the wind ELCC capacity credit study or submitted data templates for solar & runof-river) is required for full conversion.
- Any historical system injection that exceeds demonstrated deliverability (NRIS + ERIS w/ TSR) is capped down to the amount of demonstrated deliverability for that intermittent resource.
- There was a small decline in the percentage of intermittent resource UCAP conversion, however, it is difficult to say how much of that was due to the Deliverable ICAP requirements. The actual amount of UCAP conversion for intermittent units actually increased from last year, which can be attributed to new resources coming on line for 21-22.
- Overall, it would appear that the Deliverable ICAP requirements ultimately had very little impact on the ability of MPs to convert their ERIS UCAP.

Questions?

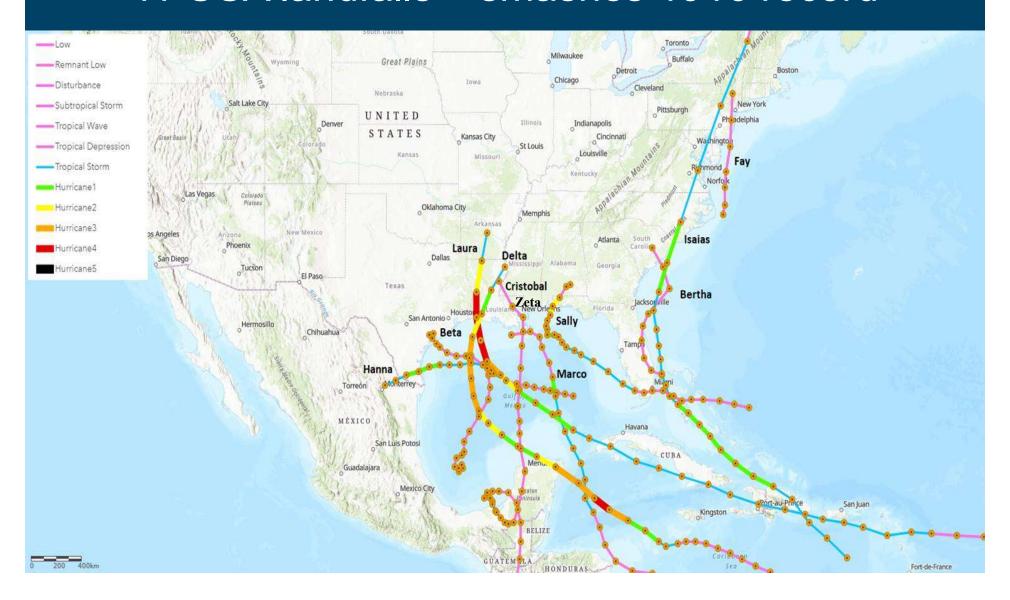

Contact Info

Davey Lopez dlopez@misoenergy.org

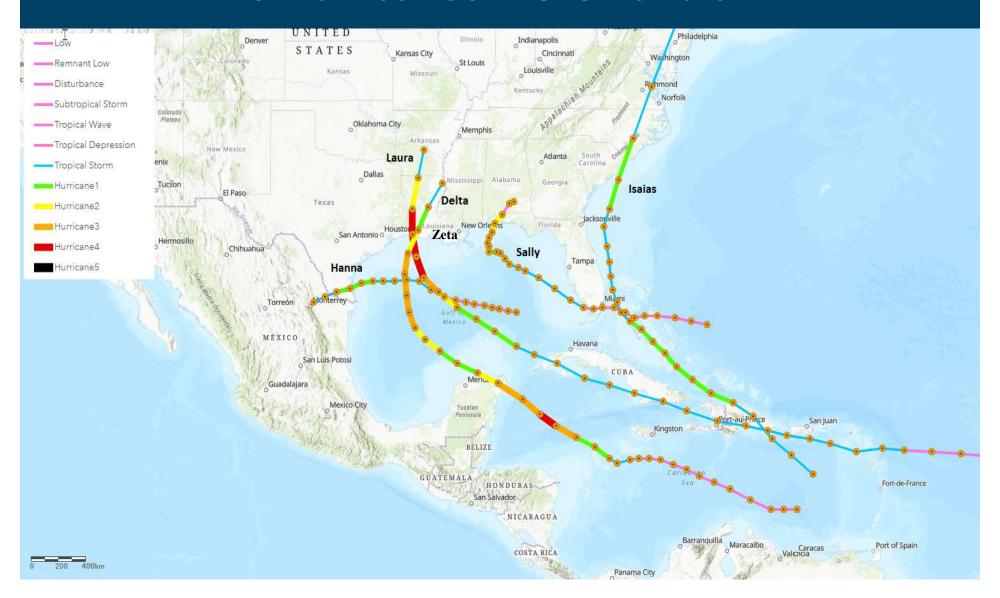
Guest speaker: Tim Ponseti, SERC

Summer Readiness

Tim Ponseti


SERCVice President, Operations

2020 Hurricane Season - Record Year



11 USA landfalls – smashes 1916 record

6 Hurricanes – U.S. landfall

Hurricane Laura - August 27, 2020

Hurricane Laura

Category 4 major hurricane (SSHWS/NWS)

Hurricane Laura near peak intensity while approaching southwestern Louisiana on August

26

Formed August 20, 2020

Dissipated August 29, 2020

Highest winds 1-minute sustained:

150 mph (240 km/h)

Lowest pressure 937 mbar (hPa); 27.67 inHg

Fatalities 77 total

Damage ≥ \$14.1 billion (2020 USD)

Areas affected Lesser Antilles, Greater

Antilles, The Bahamas, Gulf Coast of the United States, Midwestern United States.

Eastern United States

Part of the 2020 Atlantic hurricane season

Initial Sustained Transmission Line Outages

500 kv: 6

230 kv: 51

161 kv: 4

138 kv: 108

115 kv: 56

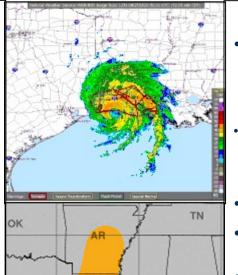
69 kv: 117

Total: 342

Initial Customers without power

LA: 615k

TX: 300k


AR: 50k

TN: 20k

MS: 15k

OK: 5k

Total: 1 million

AL

<u>Highlights</u>

- Hurricane Laura made landfall near Cameron, Louisiana on August 27th at 0100 CDT as a Category 4 Major Hurricane with 150 mph maximum sustained winds.
- Laura was the strongest hurricane to make Louisiana landfall since 1856. 42 U.S. deaths associated to Hurricane Laura.
- Damage estimates approaching **~\$15B**.
- **1900+ transmission structures** were damaged or destroyed.
- 430 Substations damaged
- Most notably were the critical 500kV and 230kV structures that feed the Western/WOTAB load pockets including the Lake Charles, Louisiana area.
- 1.5M people were under evacuation orders.
- Reliability actions taken: On August 27th, MISO issued Operating Instructions for 500 MW's of firm load shed in the Western/WOTAB TX load pockets to preserve the ~2000 MW's of load remaining.
- All customers restored by October
 1st. A few BPS transmission lines remain
 out of service and repairs are ongoing.
 The major BPS lines feeding these load
 pockets were restored on October 18th.

Hurricane Sally – September 16, 2020

Hurricane Sally

Category 2 hurricane (SSHWS/NWS)

Hurricane Sally intensifying before landfall in Alabama on September 16

Formed September 11, 2020
Dissipated September 18, 2020
(Remnant low after September 17)

Highest winds 1-minute sustained:

105 mph (165 km/h)

Lowest pressure 965 mbar (hPa); 28.5 inHg

Fatalities 8 total

Damage ≥ \$7 billion (2020 USD)

Areas affected The Bahamas, Cuba, U.S.

Gulf Coast, Southeastern

United States

Part of the 2020 Atlantic hurricane season

Initial Customers without power

AL: 293k

FL: 257k

MS: 12k

GA: 43k

Total: 605k

Initial Sustained Transmission Line Outages

230 kv: 4

115 kv: 28

Total: 32

Highlights

- 1. Hurricane Sally made landfall on Sept 16th at 0445 CDT near Gulf Shores, AL as Category 2 hurricane with 105 mph maximum sustained winds.
- Slow moving system bringing heavy rainfall and severe flooding to Florida, Alabama, Georgia, the Carolinas and into Virginia.
- 3. SERC communicated and collaborated closely with Reliability Coordinators and the NERC Situational Awareness Team throughout this event.
- Gulf Power evacuated their Primary Control Center due to loss of power relocating to their Back-Up Control Center.
- 5. Most line outages were due to tree contact.
- 6. Most customers were restored rather quickly.
- 7. Half the transmission lines were restored by Sept 18th. All transmission lines were restored by Sept 21st.
- 8. 1 -230kV structure needed to be replaced
- Hurricane Sally impacted oil/natural gas production. 27% oil production and 28% natural gas production was shut down as 149 platforms were evacuated.

Hurricane Delta – October 9, 2020

Hurricane Delta Category 4 major hurricane (\$SHW\$/NW\$)

Hurricane Delta intensifying east of Texas on

October 8

Formed October 5, 2020 Dissipated October 12, 2020 (Remnant low after October 10)

Highest winds 1-minute sustained:

145 mph (230 km/h)

Lowest pressure 953 mbar (hPa); 28.14 inHg

Fatalities 6 total

\$2 billion (2020 USD) Damage Areas affected Jamaica, Nicaragua, Cayman

Islands, Yucatán Peninsula, Gulf Coast of the United

States, Southeastern United States, Northeastern United

States

Part of the 2020 Atlantic hurricane season

Initial Sustained Transmission Line Outages

500 kV: 2

230 kV: 22

138 kV: 48

115 kV: 40

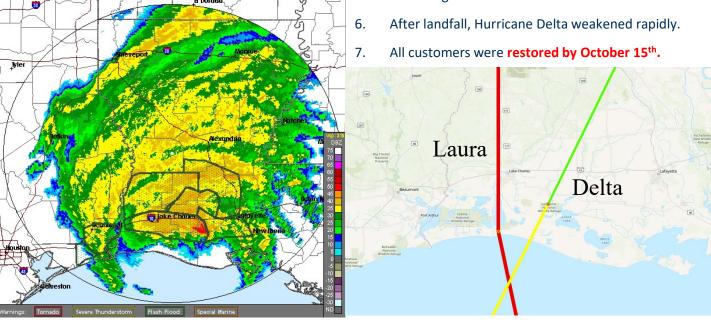
69 kV: 71

Total: 183

Initial **Customers** without power

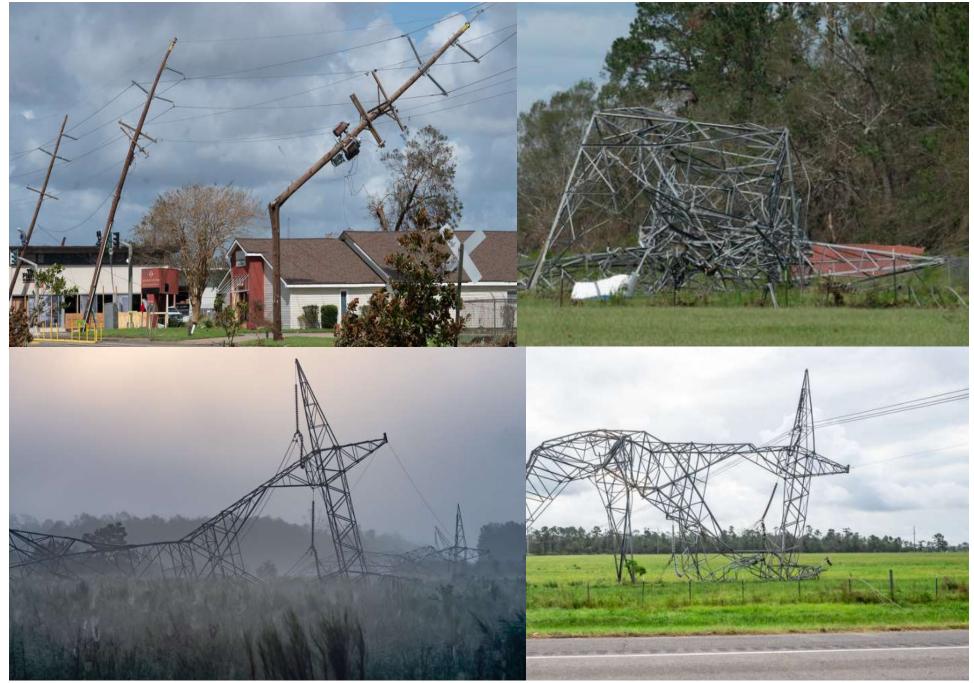
LA: 600k

TX: 115k

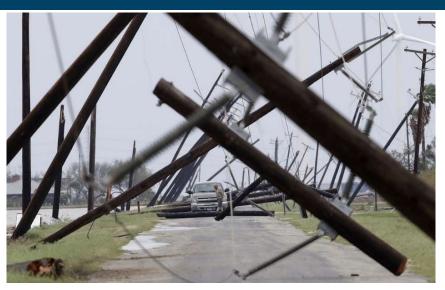

MS: 95k

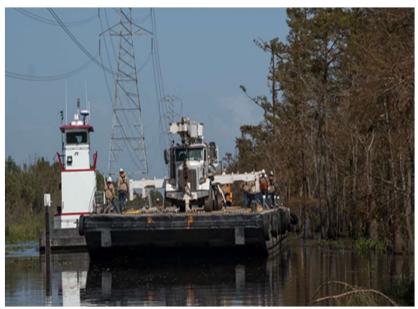
AR: 10k

Total: 820k

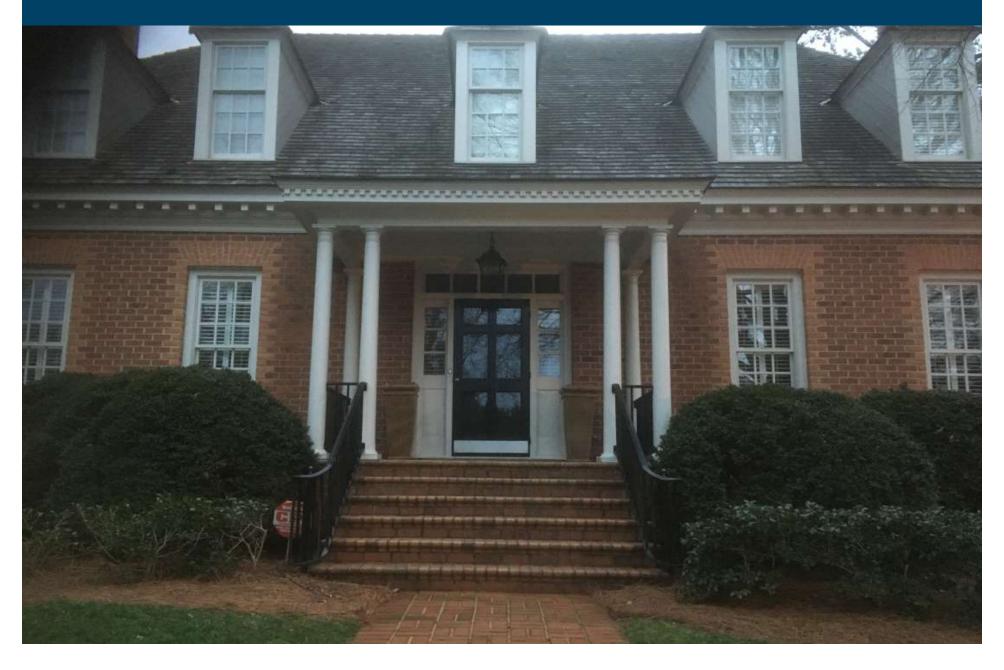

Highlights

- Hurricane Delta made landfall on October 9th at 6:00 pm CDT near Creole, Louisiana as a Category 2 hurricane with maximum sustained winds of 100mph.
- 12 miles east of where Hurricane Laura made landfall 6 weeks earlier, with Hurricane Laura restoration efforts were still ongoing.
- SERC communicated and collaborated closely with RC's, TOPS, BA's and the NERC Situational Awareness Team throughout this event.
- 4. Critical 500kV lines returned to service prior to Hurricane Delta making landfall
- 5. Those same transmission lines were forced out of service again.





Teamwork

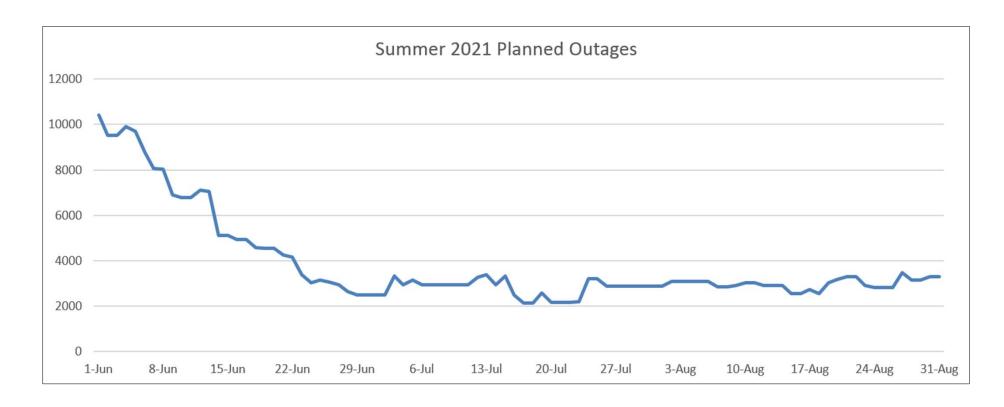

Readiness

- Prepared
- Practice
- Pro-Active
- Personnel
- Personable

End Goal....

...Keep the Lights On

Thank you for joining us today!


Appendices

Appendix I Summer Resource Assessment - Generation

Summer 2021 Planned Outages

Base Case

Base Case				
1a	Registered Nameplate Capacity (MW)	183,318		
2a	Inoperable Resources	(3,627)		
3a	No GVTC	(4,851)		
4a	Thermal Derates	(12,410)		
5a	Other Derates	(579)		
6a	GVTC-TIS	(1,004)		
7a	Wind Derates	(21,679)		
8a	ER w/o TSR	(633)		
9a	Scheduled Outages	(3,290)		
10a	Net Firm Imports	2,979		
11a	Behind-the-Meter Generation	4,463		
12a	Demand Response	7,152		
13a	Non-Transferable to North/Central	(4,132)		
а	Total Available Capacity	145,707		
b	Coincident Peak Demand + Transmission Losses	122,398		
a-b	Base Reserves (MW)	23,309		
(a-b)/b	Base Reserves (%)	19.0%		

