

#### Inverter-Based Resource Performance Requirements (IEEE 2800) (PAC-2024-2)

Interconnection Process Working Group (IPWG)

March 12, 2024

#### <u>Updated 3/13/24</u>

 Slides 5 and 21: Corrected text in table to read "require a damping ratio of 0.3 or higher"

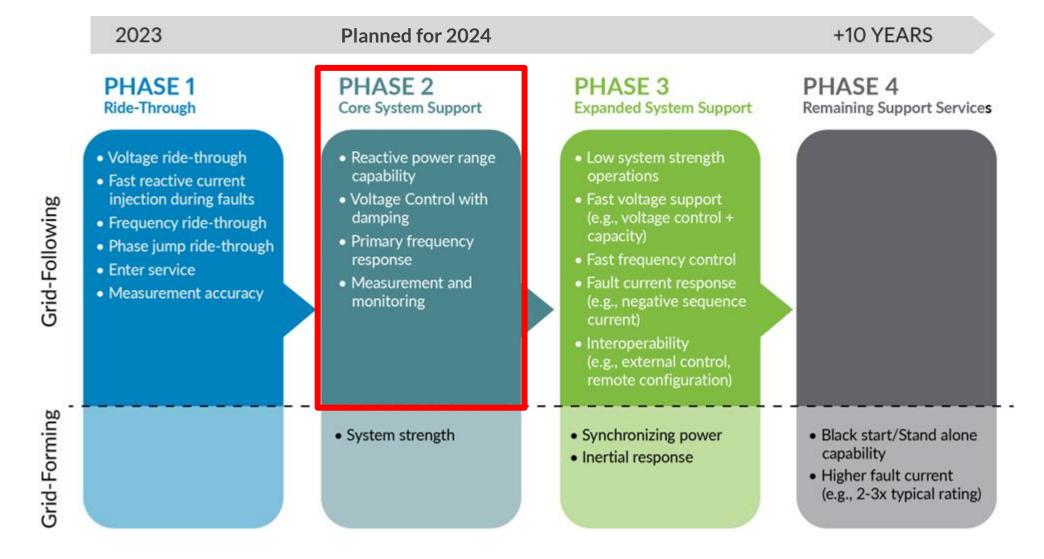
# Purpose & Key Takeaways

Purpose: Propose Inverter-Based Resource (IBR) performance requirements for implementation in 2024



#### Key Takeaways:

- MISO shares proposed performance requirements for adoption covering voltage and frequency support, consecutive voltage deviation ride-through, and measurement
- Stakeholder feedback is requested on proposed requirements along with specific questions on adoption decisions
- MISO will propose Tariff redlines and an implementation plan at the next IPWG




## 2024 IPWG and PAC schedule for the implementation of IEEE 2800 performance requirements

|        | Date       | IEEE 2800 Objective                                                            |
|--------|------------|--------------------------------------------------------------------------------|
|        | Jan 30     | Present planned IBR performance requirements to be addressed in 2024           |
|        | Mar 12     | Propose IEEE 2800 clauses for adoption [Feedback]                              |
| IPWG - | May 2      | Review feedback and propose implementation plan and tariff redlines [Feedback] |
|        | June 4     | Review feedback and share edits to tariff redlines [Feedback]                  |
|        | July 23    | Review feedback and share edits to tariff redlines                             |
| PAC -  | August 28  | Present draft tariff redlines and implementation plan [Feedback]               |
|        | October 16 | Share feedback responses and modifications                                     |



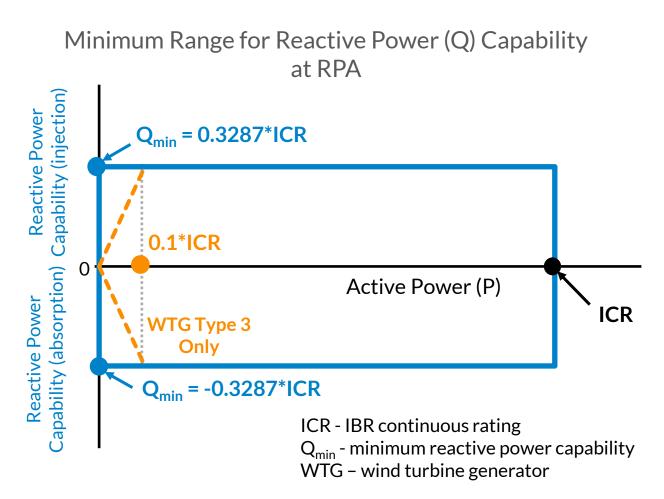
#### IBR performance requirements were identified as a key solution to ensuring system stability, and four main phases were proposed in the Attributes roadmap





#### MISO recommends moving forward with the following performance requirements from IEEE 2800-2022 to refine existing requirements in MISO's GIA

| Category                               | Performance Capability <sup>1</sup>                | IEEE 2800 Clause <sup>2</sup> | Summary of Performance Improvement Opportunity                                                                                                          |
|----------------------------------------|----------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Minimum Reactive Power Capabilities                | 5.1                           | Define more specific reactive power requirements for IBRs, with additional details for Battery Energy Storage Systems (BESS) and Type III wind turbines |
|                                        | Reactive Power Capability at Zero Active Power     | 5.1                           | Require the capability to provide reactive power support when the primary energy source is not available                                                |
| Voltage Support                        | Voltage and Reactive Power Control Modes - General | 5.2.1                         | List three required operating modes and specify voltage control as the default                                                                          |
|                                        | Voltage Control                                    | 5.2.2                         | Clearly define the voltage control mode, require a damping ratio of 0.3 or higher and other dynamic performance requirements                            |
|                                        | Constant Power Factor                              | 5.2.3                         | Clearly define the constant power factor control mode, require a damping ratio of 0.3 or higher                                                         |
|                                        | Constant Reactive Power                            | 5.2.4                         | Clearly define the constant reactive power control mode, require a damping ratio of 0.3 or higher                                                       |
| Frequency Response                     | Primary Frequency Response (PFR)                   | 6.1                           | Add ranges of available settings for PFR droop and deadband values. Define dynamic performance parameters for PFR.                                      |
| Dynamic Responses/Reliability Services | Consecutive Voltage Deviation Ride-Through         | 7.2.2.4                       | Define consecutive voltage deviation ride-through to increase general ridethrough robustness                                                            |
| Measurement                            | Measurement Data for<br>Monitoring and Validation  | 11                            | Clear requirements for data types, format, sampling/recording, and retention                                                                            |


[1] **Bolded** items are performance areas that are currently included in MISO's tariff (Generator Interconnection Agreement). See Appendix (Slide 21) for details on existing MISO requirements in each area [2] IEEE 2800-2022, IEEE Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs)

Interconnecting with Associated Transmission Electric Power Systems



## Requiring reactive power capability at zero active power could support system voltage across the range of IBR operating conditions

- The attributes project identified voltage support as a near term need
  - Planning and Generator Interconnection studies have also identified the need for additional reactive power support based on the changing resource mix
- MISO proposes to adopt the IEEE 2800 requirement for reactive power capability at zero active power
  - Type 3 wind plants are excluded, and have reduced reactive power requirements when active power is less than 10% of ICR
- MISO proposes requiring utilization of this capability when the plant is online



Reference Point of Applicability (RPA) shall be the Point of Measurement (POM)



# Three different voltage and reactive power control modes are defined in the standard

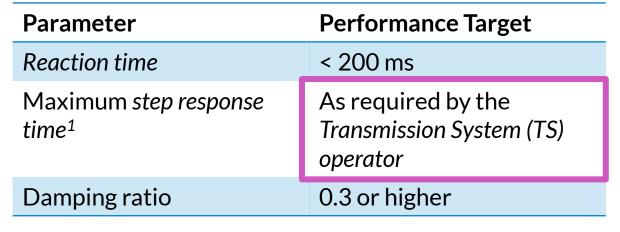
#### Voltage Control (Default)

Closed-loop automatic voltage control mode to regulate steady-state voltage at RPA to the reference value within 1% of the set point

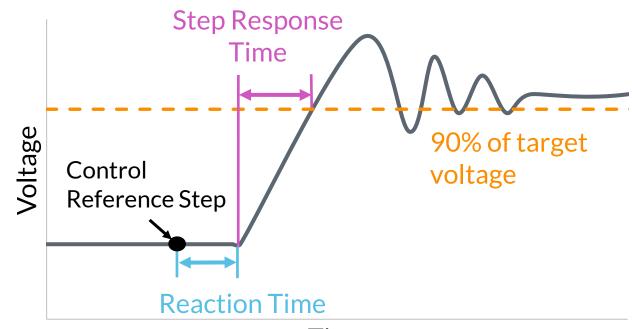
#### **Power Factor Control**

Reactive power output that is in linear proportion to the active power

#### Reactive Power Control


Maintain specified constant reactive power output

- Operating modes are mutually exclusive (i.e., enabled one-at-a-time)
- For all modes, dynamic responses should be damped with a ratio of 0.3 or higher




# MISO requests stakeholder feedback specific to voltage control dynamic performance requirements

- IEEE 2800 provides dynamic performance requirements that apply to the voltage control mode
- Seeking stakeholder input on two items:
  - Maximum step response time, which should be within the suggested range of 1
     30 seconds per guidance in the standard
  - Defining the range of system conditions for which dynamic performance requirements are applicable
    - Example: NYISO applied these requirements when the short circuit strength at the RPA was above the minimum value for a feasible generation scenario



Requirements in this table shall only be applicable to a defined range of TS equivalent impedance at the POM, specified by the *TS operator*.







# MISO also requests stakeholder feedback specific to constant power factor control mode requirements

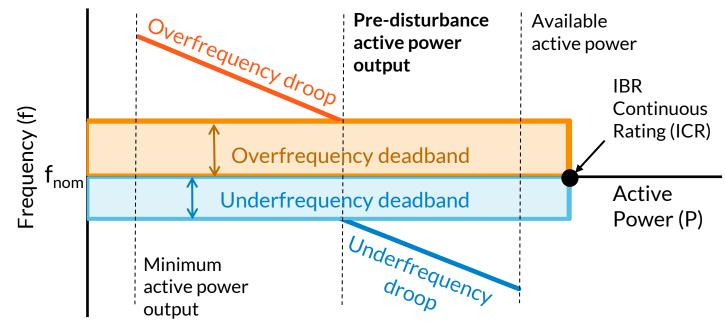
#### **Power Factor Control**

Reactive power output that is in linear proportion to the active power

- IEEE 2800 states that the power factor control mode "shall appropriately operate at all active power levels down to certain minimum IBR power level as specified by TS operator"
- Seeking specific input on this minimum active power level, especially related to:
  - Capabilities of inverter technology
  - Need for power factor control mode at low active power levels for reliable system operation



# Questions




#### IEEE 2800 primary frequency response (PFR) requirements will enhance existing PFR requirements for IBRs

- Adoption of the PFR section of the standard would add dynamic performance requirements, along with range of available setting guidance for droop and deadband parameters
- IBR plants will NOT be required to operate with headroom to address under-frequency disturbances, as is the case today.
- MISO will evaluate language in the standard to ensure there are no conflicts with the requirements from FERC Order 842¹ in MISO's tariff, especially for battery energy storage systems (BESS)

| <b>D</b> .       |                | Default                                     | Ranges of available settings |         |  |
|------------------|----------------|---------------------------------------------|------------------------------|---------|--|
| Parameter        | Units          | Value                                       | Minimum                      | Maximum |  |
| Reaction<br>time | Seconds        | 0.50                                        | 0.20<br>(0.5 for WTG)        | 1       |  |
| Rise time        | Seconds        | 4.0                                         | 2.0<br>(4.0 for WTG)         | 20      |  |
| Settling time    | Seconds        | 10.0                                        | 10                           | 30      |  |
| Damping ratio    | Unitless       | 0.3                                         | 0.2                          | 1.0     |  |
| Settling band    | % of<br>change | Max of: 2.5%<br>of change or<br>0.5% of ICR | 1                            | 5       |  |

Primary Frequency Response Characteristics





## Consecutive voltage deviation is the only remaining requirement needed to complete adoption of all ride-through capabilities in the standard

- Requires the IBR plant to ride through multiple voltage excursions outside of the continuous operation region
  - Exceptions provided in tables<sup>1</sup>
- This clause was not included in Phase I of 2800 requirement adoption due to concerns about original equipment manufacturer (OEM) readiness
- MISO is requesting feedback about technology readiness for this clause, now that there has been more time to evaluate the impacts of 2800 requirements on different inverter models

| Time Period    | May Trip for this number of Voltage Deviations |
|----------------|------------------------------------------------|
| 10s            | 5+                                             |
| 120s           | 7+                                             |
| 30min (1,800s) | 11+                                            |

| Time Period | May Trip for this number of<br>Voltage Deviations Below 50%<br>of Nominal Voltage |  |
|-------------|-----------------------------------------------------------------------------------|--|
| 10s         | 3+                                                                                |  |
| 120s        | 4+                                                                                |  |



#### MISO proposes to enhance existing monitoring and recording data requirements in four areas

| Data Type <sup>1</sup>                      | Data Format               | Summary                                                                                                                             |
|---------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Sequence of Events Recording (SER) data     | Tab log file              | Storage of event records and logs                                                                                                   |
| Digital Fault Recording (DFR) data          | COMTRADE                  | Capture plant-level response to BPS events, typically transient point-on-wave data with high resolution                             |
| Dynamic Disturbance Recorder (DDR) data     | COMTRADE                  | Plant-level data captured <b>continuously</b> , including voltage phasor, frequency, and current phasor                             |
| Inverter fault codes and dynamic recordings | Tab log file,<br>COMTRADE | For events which trigger ride-through operation of an IBR unit, record fault codes and current/voltage values at the IBR unit-level |

<sup>[1]</sup> Bolded data types have overlap with existing requirements in MISO's GIA

- The four categories of measurement data above are identified in both the IEEE 2800 standard and the draft PRC-028 standard (Disturbance Monitoring and Reporting Requirements for IBRs)
- Detailed information on data items, recording rates, and retention and duration requirements will be provided at the next IPWG



# MISO is requesting feedback on this proposal to require phasor measurement unit (PMU) data for IBRs

- IEEE 2800 and the draft standard PRC-028 have plant-level dynamic disturbance recorder (DDR) data requirements
  - MISO is proposing to specifically require PMU data rather than DDR data more broadly
- It is MISO's understanding that PMUs are commonly installed with standard plant equipment, and are a known solution for meeting DDR requirements
- There are two applications of PMU technology to be considered:
  - Local storage of PMU data, for post-event analysis
  - Real-time streaming of PMU data, which could support future real-time analysis tools for operators
- MISO is exploring the need for data streaming versus data storage, and will propose the PMU data collection method at the next IPWG

#### Dynamic Disturbance Recording (DDR)

NERC - "The recording of time sequenced data for dynamic power system characteristics." 1

Fast, continuous sampling (i.e. output of 30-60 times per second)

#### Phasor Measurement Unit (PMU)

High-speed devices that measure time synchronized voltage and current phasors of the power system, and can provide data in real-time

Capable of meeting DDR sampling requirements



## There are decision points associated with MISO's recommended performance requirements that will be detailed in the tariff language

| Category                                     | Performance Capability                                | IEEE 2800 Clause | Decision Points                                                                                                          |
|----------------------------------------------|-------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                              | Minimum Reactive Power Capabilities                   | 5.1              | None (adopt by reference)                                                                                                |
|                                              | Reactive Power Capability at Zero Active Power        | 5.1              | None (adopt by reference)                                                                                                |
|                                              | Voltage and Reactive Power<br>Control Modes - General | 5.2.1            | None (adopt by reference)                                                                                                |
| Voltage Support                              | Voltage Control                                       | 5.2.2            | Dynamic performance requirements decisions: max step response time and range of conditions for requirement applicability |
|                                              | Constant Power Factor                                 | 5.2.3            | Determine minimum active power level for power factor control mode                                                       |
|                                              | Constant Reactive Power                               | 5.2.4            | None (adopt by reference)                                                                                                |
| Frequency Response                           | Primary Frequency Response (PFR)                      | 6.1              | Specify utilization of PFR capability                                                                                    |
| Dynamic<br>Responses/Reliability<br>Services | Consecutive Voltage Deviation<br>Ride-Through         | 7.2.2.4          | None (adopt by reference)                                                                                                |
| Measurement                                  | Measurement Data for<br>Monitoring and Validation     | 11               | Specify exact data categories, data points, recording rates, retention and duration times                                |



#### Next Steps

- Request, review, and respond to stakeholder feedback on proposed performance requirements
- MISO will provide further detail on proposed measurement data requirements
- MISO will propose Tariff redline language for MISO's Tariff Attachment X-Appendix 6 at the next IPWG
- MISO will also propose an implementation plan



#### Stakeholder Feedback Request

- MISO is requesting feedback on the Recommended IBR Performance Requirements (PAC-2024-2) presented today by March 26<sup>th</sup>, 2024.
  - Concerns or reasons not to proceed with recommended performance requirements
  - Other performance requirements you see as priorities that should be considered in this round of implementation
  - Specific input on the following technical questions, with rationale for preferences:
    - What **voltage control maximum** *step response time*, within the range of 1-30 seconds, is preferred? (Slide 8)
    - What is the preferred methodology for defining the **range of system conditions** that the voltage control dynamic performance requirements should be applicable for? (Slide 8)
    - What is the preferred **minimum active power level** for power factor control mode operation? (Slide 9)
    - Concerns about implementation of consecutive voltage deviation ride-through requirements (Slide 12)
    - Thoughts on measurement data categories and requirement of PMU data (Slides 13 and 14)
- Feedback requests and responses are managed through the Feedback Tool on the MISO website: <a href="https://www.misoenergy.org/engage/stakeholder-feedback/">https://www.misoenergy.org/engage/stakeholder-feedback/</a>





# Questions?

Megan Pamperin <a href="mailto:mpamperin@misoenergy.org">mpamperin@misoenergy.org</a>

Patrick Dalton <a href="mailto:pdalton@misoenergy.org">pdalton@misoenergy.org</a>

# Appendix



#### Links to previous 2024 MISO presentations:

20240130 IPWG Item 04 IBR Performance Requirements



| Category                               | Performance Capability                                | IEEE 2800 Clause | Current MISO Tariff Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary of Performance Improvement<br>Opportunity                                                                            |
|----------------------------------------|-------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                                        | Minimum Reactive Power<br>Capabilities                | 5.1              | Attachment X Appendix 6 Section 9.6.1.2: Plant shall be "capable of maintaining a composite power delivery at continuous rated power output at the high-side of the generator substation at all power factors over 0.95 leading to 0.95 lagging". Attachment X Appendix 6, Appendix G, Section A.ii.: Plant "shall maintain a factor within the range of 0.95 leading to 0.95 lagging measured at the high side of the generator substation."                                      | Define more specific reactive power requirements for IBRs, with additional details for BESS and Type III WTGs                |
|                                        | Reactive Power Capability at<br>Zero Active Power     | 5.1              | Not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Require the capability to provide reactive power support when the primary energy source is not available                     |
| Voltage Support                        | Voltage and Reactive Power<br>Control Modes - General | 5.2.1            | Attachment X Appendix 6 Section 9.6.2: "Interconnection Customer shall operate the Generating Facility to maintain the specified output voltage or power factor"                                                                                                                                                                                                                                                                                                                   | List three required operating modes and specify voltage control as the default                                               |
|                                        | Voltage Control                                       | 5.2.2            | Attachment X Appendix 6 Section 9.6.2.1: "Interconnection Customer shall operate the Generating Facility with its speed governors and voltage regulators in automatic operation."                                                                                                                                                                                                                                                                                                  | Clearly define the voltage control mode, require a damping ratio of 0.3 or higher and other dynamic performance requirements |
|                                        | Constant Power Factor                                 | 5.2.3            | Attachment X Appendix 6 Section 9.6.2: "Interconnection Customer shall operate the Generating Facility to maintain the specified output voltage or power factor"                                                                                                                                                                                                                                                                                                                   | Clearly define the constant power factor control mode, require a damping ratio of 0.3 or higher                              |
|                                        | Constant Reactive Power                               | 5.2.4            | Not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clearly define the constant reactive power control mode, require a damping ratio of 0.3 or higher                            |
| Frequency Response                     | Primary Frequency Response<br>(PFR)                   | 6.1              | Attachment X Appendix 6 Section 9.6.4: IC "is required to install a governor or equivalent controls with the capability of operating with a maximum 5 percent droop and +-0.036 Hz deadband".  Attachment X Appendix 6 Section 9.6.4.2: IC shall ensure that the plant's real power response is automatic, immediate, and sustained until the frequency returns to a value within the deadband.  See additional language in sections 9.6.4, 9.6.4.1, 9.6.4.2. 9.6.4.3, and 9.6.4.4 | Add ranges of available settings for PFR droop and deadband values. Define dynamic performance parameters for PFR.           |
| Dynamic Responses/Reliability Services | Consecutive Voltage Deviation<br>Ride-Through         | 7.2.2.4          | Not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Define consecutive voltage deviation ride-through to increase general ridethrough robustness                                 |
| Measurement                            | Measurement Data for<br>Monitoring and Validation     | 11               | Attachment X Appendix 6, Appendix G, Section A.iv.: "Non-synchronous generating facilities with generating capacities of more than 20 MW must monitor and record data for all frequency ride-through events, transient low-voltage disturbances that initiated reactive current injection, reactive current injection or momentary cessation for transient high-voltage disturbances, and inverter trips.  See full tariff section for more details.                               | Clear requirements for data types, format, sampling/recording, and retention                                                 |



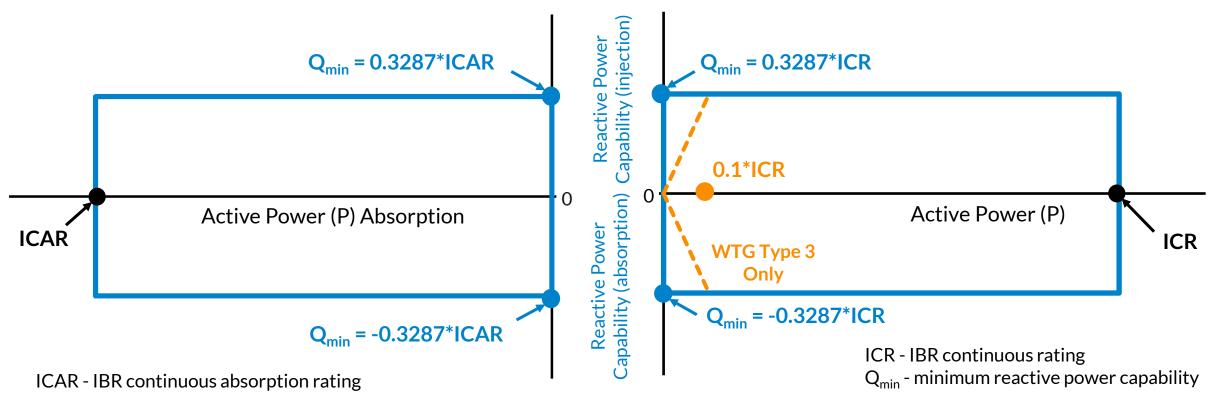
# Additional information on IEEE 2800-2022 performance requirements



#### IEEE 2800 defines minimum reactive power capabilities

- IBR minimum reactive power capability to inject or absorb at least 32.87% of IBR continuous rating (ICR) at the point of measurement (POM).
  - Applies only when applicable voltage and frequency are within the continuous operation region
  - Applies both when IBR is injecting and absorbing active power $^1$ .
  - Applies at all levels of active power, with several exceptions<sup>2</sup>
    - Type III wind turbine generators have reduced reactive requirement at low active power levels.
  - Equates to +/-0.95 power factor, consistent with FERC Orders 2003<sup>3</sup> and 827<sup>4</sup>
  - Capability requirement applies regardless of primary energy source availability status.<sup>5</sup>
    - Under mutual agreement, the capability may be used to participate in reactive power exchange at zero active power.
    - If IBR is designed to cease operation below a specified minimum active power capability that's greater than zero, the IBR plant will not produce reactive power after operation ceases.

<sup>[3]</sup> Federal Energy Regulatory Commission, Docket No. RM02-1-000; Order No. 2003. Standardization of Generator Interconnection Agreements and Procedures. Issued July 24, 2003.



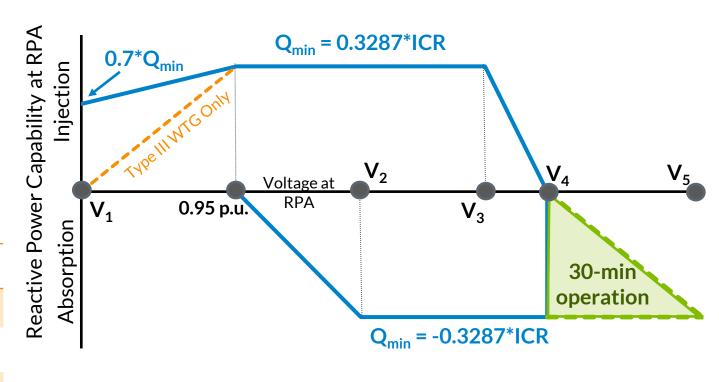

<sup>[1]</sup> Absorbing active power applies to energy storage. The continuous active power absorption rating is used for determining reactive power during absorption.

<sup>[2]</sup> An exception related to off-shore wind exists in IEEE 2800-2022 clause 5.1.

# Minimum reactive power capability requirements apply during both active power injection and active power absorption (if applicable)

Minimum Range for Reactive Power (Q) Capability at RPA<sup>1</sup>




Reference Point of Applicability (RPA) shall be the Point of Measurement (POM)



# Additional reactive power capability requirements apply for non-nominal voltage conditions

- Minimum reactive power capability requirements differ by nominal RPA voltage, as shown in the table below.<sup>1</sup>
- Different requirements exist for continuous versus 30-minute operation.
- IBR shall maintain voltage schedule provided by transmission operator, within required capability<sup>2</sup>

| TS nominal voltage at the RPA <sup>3</sup> | V1 (p.u.) | V2 (p.u.) | V3 (p.u.) | V4 (p.u.) | V5 (p.u.) |
|--------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| < 200 kV                                   | 0.90      | 0.99      | 1.03      | 1.05      | 1.10      |
| >= 200 kV (except<br>500 kV and 735 kV)    | 0.90      | 1.00      | 1.04      | 1.05      | 1.10      |
| 500 kV                                     | 0.90      | 1.02      | 1.06      | 1.10      | 1.10      |
| 735 kV                                     | 0.90      | 1.02      | 1.06      | 1.088     | 1.10      |



Reference Point of Applicability (RPA) shall be the Point of Measurement (POM)



<sup>[1]</sup> An exception exists for Type III WTG for voltages less than 0.95 p.u.

<sup>[2]</sup> Requirement applies to storage across charging or discharging statuses, including the transition between.

<sup>[3]</sup> TS operator can require different values for V1-V5

#### The standard also contains dynamic requirements for reactive capability and control

- Reactive power capability and control shall be dynamic as defined by the voltage control requirements (IEEE 2800, Table 5) shown in Slide 27.
  - IBR time response for steady-state condition includes transformer tap changing that's needed to retain IBR unit voltages within range of Q requirements.
  - Switched shunts or LTC transformer tap change operation needed to restore dynamic reactive power capability shall respond within 60 seconds.
- Non-dynamic reactive power devices can be used to compensate for losses between IBR units and the RPA if they are automatically controlled to maintain IBR plant dynamic capability

#### **Dynamic Reactive Power Devices**

- Power electronics based systems (IBR units, SVC, STATCOM, etc.)
- Rotating machines (synchronous machines, type III WTGs, etc.)
- Electronically-switched compensation devices

#### **Non-Dynamic Reactive Power Devices**

• Mechanically-switched reactive power compensation devices (shunt capacitors, shunt reactors, etc.)



# IEEE 2800 provides requirements and dynamic performance requirements for the default voltage control operating mode

- Automatic voltage control mode droop shall have a range of settings from 0 to 0.3 p.u. voltage change for 1.0 per unit reactive power on the ICR base
- Dynamic reactive power response to a step change in voltage must meet the performance requirements in the table
  - A stable and damped response takes precedence over response time

#### **Voltage Control Mode**

Closed-loop automatic voltage control mode to regulate steady-state voltage at RPA to the reference value within 1% of the set point

| Parameter                               | Performance Target                          |
|-----------------------------------------|---------------------------------------------|
| Reaction time                           | < 200 ms                                    |
| Maximum step response time <sup>1</sup> | As required by the TS operator <sup>2</sup> |
| Damping ratio <sup>3</sup>              | 0.3 or higher                               |

Requirements in this table shall only be applicable to a defined range of TS equivalent impedance at the POM, specified by the *TS operator*.



<sup>[1]</sup> The standard states that the slowest response shall be tuned based on the *TS operator* requirements for response time and stability given grid strength, local voltage control devices, and overshoot requirements

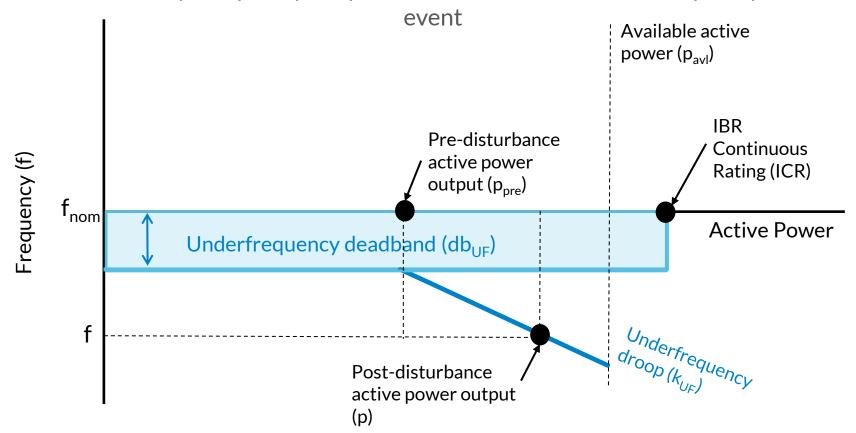
<sup>[2]</sup> Step response time typically ranges between 1 – 30 seconds

<sup>[3]</sup> Damping ratio will depend on grid strength

# IEEE 2800 requires primary frequency response within the limits of minimum and available active power

- The IBR plant shall have the capability to provide primary frequency response in both the continuous and mandatory operation regions
  - Response to under-frequency conditions is limited by available active power
  - Response to over-frequency conditions is limited by minimum active power capability
- The IBR plant PFR controller shall have the following default values and ranges of possible settings
  - Default values for deadband and droop match what is currently required in the MISO Generator Interconnection Agreement<sup>1</sup>

| _                                              |       |                          | Ranges of available settings |                         |  |
|------------------------------------------------|-------|--------------------------|------------------------------|-------------------------|--|
| Parameter                                      | Units | Default Value            | Minimum                      | Maximum                 |  |
| Underfrequency<br>deadband (db <sub>UF</sub> ) | Hz    | 0.06% × f <sub>nom</sub> | 0.025% x f <sub>nom</sub>    | 1.6% x f <sub>nom</sub> |  |
| Overfrequency deadband (db <sub>OF</sub> )     | Hz    | 0.06% x f <sub>nom</sub> | $0.025\% \times f_{nom}$     | 1.6% x f <sub>nom</sub> |  |
| Underfrequency<br>droop (k <sub>UF</sub> )     |       | 5%                       | 2%                           | 5%                      |  |
| Overfrequency droop (k <sub>OF</sub> )         |       | 5%                       | 2%                           | 5%                      |  |



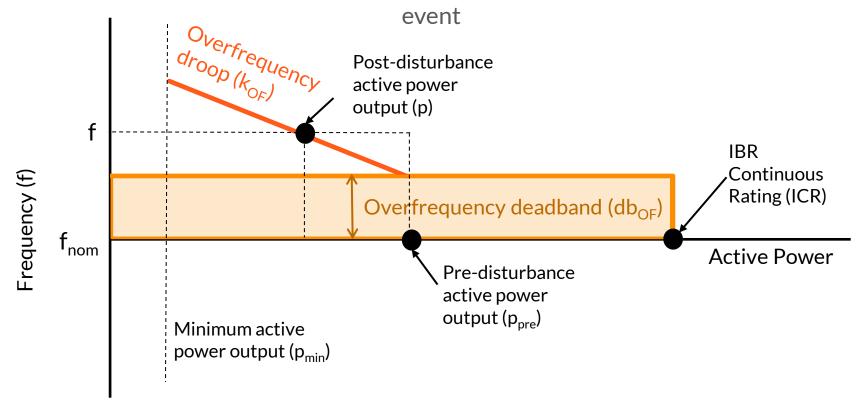

#### PFR - Underfrequency Event Example

- Calculate the desired active power output with PFR response following the provided equation
- Active power output will be the desired active power output with PFR response, unless available
  active power is limiting

$$p = \min\left\{p_{\text{avl}}, p_{\text{pre}} + p_{\text{PFR}}\right\} = \min\left\{p_{\text{avl}}, p_{\text{pre}} + \max\left(0, \frac{f_{\text{nom}} - f - db_{\text{UF}}}{f_{\text{nom}} \times k_{\text{UF}}}\right)\right\}$$

Primary Frequency Response Characteristics - underfrequency






#### PFR Overfrequency Event Example

- Calculate the desired active power output with PFR response following the provided equation
- Active power output will be the desired active power output with PFR response, unless minimum active power is limiting

$$p = \max\left\{p_{\min}, p_{\text{pre}} + p_{\text{PFR}}\right\} = \max\left\{p_{\min}, p_{\text{pre}} + \min\left(0, \frac{f_{\text{nom}} - f + db_{\text{OF}}}{f_{\text{nom}} \times k_{\text{OF}}}\right)\right\}$$

Primary Frequency Response Characteristics - overfrequency





## Dynamic performance capabilities are defined for primary frequency response

- IBR plant shall sustain PFR for as long as the primary energy source is available
- Dynamic response for a step change in applicable frequency shall adhere to the parameters in the table below
- IBR plant will not be required to change its active power output at a rate greater than its ramping capability
- Response shall be stable and positively damped with a ratio of 0.3 or higher
  - A damped response takes priority over the rise and settling time parameters

| Parameter                  | Units       | Default Value                         | Ranges of available settings |         |  |
|----------------------------|-------------|---------------------------------------|------------------------------|---------|--|
| Parameter                  | Offics      | Default value                         | Minimum                      | Maximum |  |
| Reaction time <sup>1</sup> | Seconds     | 0.50                                  | 0.20 (0.5 for WTG)           | 1       |  |
| Rise time                  | Seconds     | 4.0                                   | 2.0 (4.0 for WTG)            | 20      |  |
| Settling time              | Seconds     | 10.0                                  | 10                           | 30      |  |
| Damping ratio              | Unitless    | 0.3                                   | 0.2                          | 1.0     |  |
| Settling band              | % of change | Max of: 2.5% of change or 0.5% of ICR | 1                            | 5       |  |



# IEEE 2800 also contains clarifications for the utilization of PFR in operations

- If the IBR plant is in curtailed operation, response to under-frequency disturbances is required up to the IBR plant's available active power
- Total active power output may be allowed to temporarily exceed the ICR of the IBR plant up to its IBR short-term rating (ISR)
- IBR plant shall return to normal operation when the frequency returns within the PFR deadbands, at that point the PFR magnitude will inherently become zero
- For energy storage systems, the dynamic performance during PFR when changing from exporting to importing active power (and vice versa) shall not prevent the IBR plant from meeting the dynamic performance requirements



## Consecutive voltage deviation ride-through is required, but exceptions are provided for high numbers of voltage deviations

- IBR plant shall ride through multiple voltage excursions outside of the continuous operation regions except:
  - May trip for the cases shown in the tables below
  - May trip if the cumulative duration of voltage deviations exceeds the voltage ride-through durations
  - May trip for any voltage deviation outside of continuous operation regions that follows the end of a previous deviation by less than 20 cycles of system fundamental frequency
  - Individual WTG units may trip to self-protect for consecutive voltage deviations that result in mechanical resonances that exceed equipment limits

#### **Voltage Deviation Definition**

- Begins when the voltage leaves the continuous operation region
- End when the rms
   magnitude of the voltage is
   within the continuous
   operation region

| Time Period    | May Trip for this number of Voltage Deviations |
|----------------|------------------------------------------------|
| 10s            | 5+                                             |
| 120s           | 7+                                             |
| 30min (1,800s) | 11+                                            |

| Time Period | May Trip for this number of Voltage Deviations Below 50% of Nominal Voltage |
|-------------|-----------------------------------------------------------------------------|
| 10s         | 3+                                                                          |
| 120s        | 4+                                                                          |

