POTOMAC ECONOMICS

IMM Quarterly Report: Spring 2025

Presented to:

Markets Committee of the Board of Directors

Carrie Milton
Potomac Economics

June 10, 2025

POTOMAC - ECONOMICS

Spring Summary

- The MISO markets performed competitively and mitigation was infrequent
- Energy prices rose 42 percent compared to last Spring as gas prices doubled, up from historically low values at Henry Hub last spring.
 - Peak load fell one percent and average load was the same as last year
- MISO experienced multiple episodes of severe weather MISO declared two transmission emergencies that led to load shedding in the South:
 - In April, outages in SPP caused low voltage reliability risks that led to load shedding in both SPP and MISO
 - In May, transmission and multiple generator outages caused load shedding in Amite South
- Despite higher gas prices and the severe congestion in the South, dayahead and real-time congestion rose just 2 and 4 percent, respectively
- Virtual trading quantities and profits were comparable to last spring
 - To address a modeling issue that enables virtual traders to extract inefficient rents, we recommend MISO suspend trading at the affected locations

Quarterly Summary

		Chan	Change ¹				Change ¹		
Spring		_	Prior	Prior			_	Prior	Prior
		Value	Qtr.	Year			Value	Qtr.	Year
RT Energy Prices (\$/MWh)		\$35.29	-13%	42%	FTR Funding (%)	•	100%	99%	93%
Fuel Prices (\$/MMBtu)					Wind Output (MW/hr)		13,416	-2%	-2%
Natural Gas - Chicago		\$3.12	-17%	108%	Wind Curtailed (MW/hr)		719	42%	-27%
Natural Gas - Henry Hub		\$3.54	-9%	105%	Guarantee Payments (\$M) ⁴				
Western Coal		\$0.81	0%	4%	Real-Time RSG		\$3.8	-44%	78%
Eastern Coal		\$1.89	4%	9%	Day-Ahead RSG	•	\$11.8	-5%	60%
Load (GW) ²					Day-Ahead Margin Assurance	•	\$13.4	23%	-3%
Average Load	•	69.1	-14%	0%	Real-Time Offer Rev. Sufficiency	•	\$1.1	67%	-2%
Peak Load		97.3	-11%	-1%	Price Convergence ⁵				
% Scheduled DA (Peak Hour)		99.9%	99.7%	99.8%	Market-wide DA Premium	•	-3.3%	4.0%	-6.3%
Transmission Congestion (\$M)					Virtual Trading				
Real-Time Congestion Value		\$584.1	7%	4%	Cleared Quantity (MW/hr)	•	24,449	3%	-2%
Day-Ahead Congestion Revenue		\$378.1	17%	2%	% Price Insensitive	•	52%	52%	43%
Balancing Congestion Revenue ³	•	-\$28.2	\$1.8	\$8.4	% Screened for Review	•	2%	2%	2%
Ancillary Service Prices (\$/MWh)					Profitability (\$/MW)	•	\$0.6	\$0.8	\$0.6
Regulation		\$21.25	20%	75%	Dispatch of Peaking Units (MW/hr)	•	849	1,040	1,611
Spinning Reserves		\$3.22	27%	25%	Output Gap- Low Thresh. (MW/hr)	•	22	79	31
Supplemental Reserves		\$0.87	-6%	227%					
Short-Term Reserves		\$0.35	-50%	26%					

Key:

Expected

Monitor/Discuss

Concern

- Notes: 1. Values not in italics are the values for the past period rather than the change.
 - 2. Comparisons adjusted for any change in membership.
 - 3. Net real-time congestion collection, unadjusted for M2M settlements.
 - 4. Includes effects of market power mitigation.
 - 5. Values include allocation of RSG.

POTOMAC - ECONOMICS

Quarterly Highlights: Spring 2025

April 2 Load Shed Event in MISO South (Slide 44)

- Weather-related challenges and voltage issues in MISO and SPP led to 27 MW of load shed in MISO South on April 2nd near the SPP seam
 - Severe storms lasting 4 days caused widespread transmission outages in MISO South that were compounded by major SPP planned outages
 - Two major line outages and multiple generation outages along the seam caused low-voltage grid issues that prompted MISO to declare varying levels of transmission emergencies
 - MISO directed load shedding in both MISO and SPP after a key line tripped
- Consistent with our recommendation, MISO attempted to price the load shed at the Value of Lost Load (VOLL), but it was unsuccessful
 - MISO identified process improvements going forward to reflect VOLL pricing for targeted load shed
- MISO's situational awareness and operator actions protected the grid:
 - MISO identified issues, coordinated with SPP, and took swift actions
 - SPP and MISO have agreed to work together to learn from this event

POTOMAC - ECONOMICS

Quarterly Highlights: Spring 2025

May 25 Load Shed Event in MISO South (Slide 45)

- On May 25, forced transmission and generation outages impacted Amite South and MISO shed 600 MW of load in the Amite South Load Pocket
 - An impactful 500 kV forced transmission outage reduced power flows from the Southeast Texas load pocket into Amite South
 - Over 2 GW of generation was on planned outage, and an additional 4 GW of forced outages occurred, including a significant nuclear unit in the region
- MISO declared a transmission emergency and took a number of actions:
 - The emergency declaration provided access to emergency output ranges
 - MISO called for transmission line loading relief (TLR) that curtailed transactions between TVA and Southern Company
 - MISO implemented reconfiguration to mitigate the flows on the constraint
 - Flows reached critical levels and prompted load shedding by Entergy and Cleco in New Orleans and north of Lake Pontchartrain in Louisiana

- POTOMAC - ECONOMICS

Quarterly Highlights: Spring 2025

May 25 Load Shed Event in MISO South (Slide 45)

- This event was caused by an unlikely combination of planned and forced outages. MISO acted quickly but was impacted by a number of issues:
 - Although MISO had access to the emergency ranges on online units in the area, a number of resources did not follow dispatch into these ranges
 - MISO did not deploy LMRs in the area because MISO did not determine which LMRs were in locations that would help relieve the constraint
 - MISO committed a generator for VLR on May 25 that loaded the critical constraint – MISO decommitted the unit on May 24 and canceling the start on May 25 would likely have been advisable to help relieve the constraint
- To address future events, we recommend MISO:
 - Establish penalty provisions for generation non-performance in emergency ranges that mirror the proposed penalty provisions for LMRs
 - Develop local STR requirements for load pockets that would provide better incentives for resources in these areas
 - Improve LMR location information and process to call in advance of TSEs
 - Develop processes to decommit or cancel starts when it is the best option

POTOMAC • ECONOMICS

Quarterly Highlights: Spring 2025

Inefficient Pricing on March 10 (Slide 46)

- The real-time dispatch sends dispatch instructions to generation to match the load every 5 minutes
 - MISO can adjust the real-time load in a dispatch "load offset" adjustment to account for unmodeled load or supply deviations and balance the system
 - The offset should not be used to prevent the market from pricing a shortage
- On March 10, over-forecasted wind and solar down-ramp caused the MISO dispatch to run out of rampable energy to meet the system needs
 - Selecting offsets that reflected the supply and demand situation would have resulted in system marginal prices of \$3,500/MWh for 20 minutes
 - MISO used lower offsets that eliminated the shortage pricing, reducing prices by roughly \$3,000/MWh, which had a \$71 million market impact
- MISO agrees that the offsets selected on March 10 were not ideal
 - We are working with MISO to improve the offset procedures, including ensuring that offset decisions are not made based on pricing outcomes

POTOMAC ECONOMICS

Quarterly Highlights: Spring 2025

2025–2026 Planning Resource Auction Results (Slide 47)

- MISO cleared its first seasonal PRA under the RBDC in April
 - Auction clearing prices (ACP) averaged nearly \$215 per MW-day for the year,
 with the lowest prices in the winter and highest in summer
- The summer price of \$666 per MW-day accurately signals the tightening margin, compared to \$20 per MW-day under a vertical demand curve.
 - 2.3 GW was procured above the minimum, which is valuable for reliability and lowers the clearing price
- Summer prices would have cleared at \$472 per MW-day had 1.6 GW of resources deferred retirement to the fall – DOE ordered 1.2 GW to defer

				Prices (\$/MW-Day)		Excess (Cleared
Season	Capacity Procured	Offered Not Cleared	LOLE Target	Rest of Market	MISO South	System	South
Summer 25	137,559	277	0.10	\$666	5.50	1.017	1.008
Fall 25	132,516	4,260	0.01	\$91.60	\$74.09	1.023	1.002
Winter 25/26	131,000	3,262	0.01	\$33.	20	1.051	1.075
Spring 26	130,700	5,361	0.01	\$69.	.88	1.012	0.997
PRA Year	132,944	3,290		\$215.30	\$210.92	1.026	1.021

Quarterly Highlights: Spring 2025

IMM Summer 2025 Assessment (Slide 20)

- We assessed the expected summer capacity margin based on the coincident peak summer forecast and the results of the 2025–26 PRA
 - Excluding typical outages and derates, MISO can expect a capacity margin of 18.9 percent, including more than 13 GW of emergency-only capacity
 - Including typical planned and forced outages and average non-firm imports in peak periods of 4.3 GW produces a capacity margin of 12.2 percent
 - Unusually hot conditions could raise peak demand by 7 GW and reduce supply by 7.6 GW and result in a capacity margin close to zero, although this scenario is very unlikely and additional imports would likely respond
- These levels are more than sufficient to satisfy MISO's reliability needs
- This is inconsistent with recent NERC Long-Term Reliability Assessment
 - We find this report inaccurate it understates MISO's DR capacity, behindthe-meter generation, and firm capacity imports by more than 8 GW
 - It includes unrealistic potential near-term retirements of fossil resources
 - It does not properly recognize the size and value of MISO's import capability

9

• POTOMAC • ECONOMICS

Quarterly Highlights: Spring 2025

Virtual Trading Inefficiency (Slide 48)

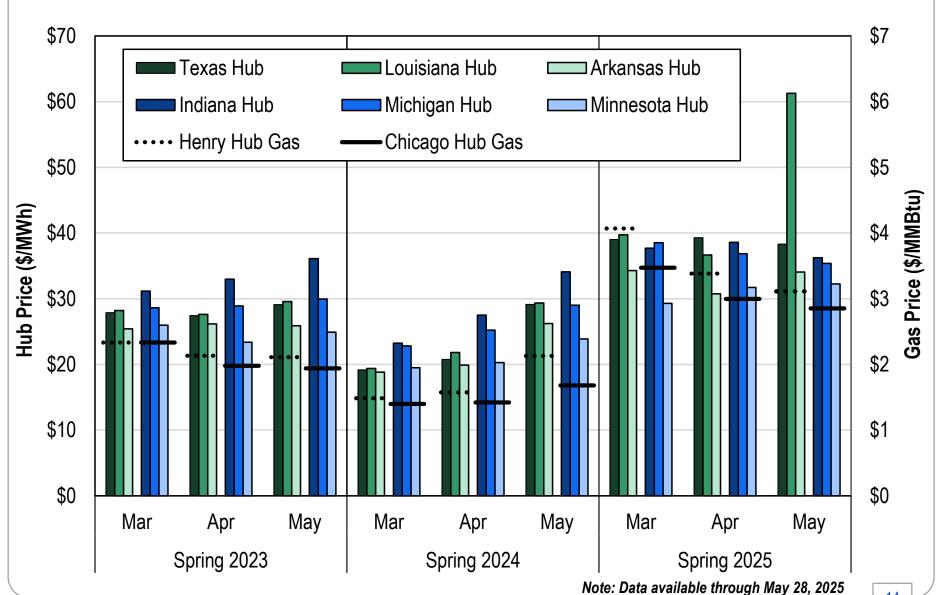
- We have identified an aggregation modeling inefficiency that provided virtual traders with an opportunity to capture riskless rents from MISO
 - Under certain system conditions, virtual traders could capture profits at no risk based on modeling differences between day ahead and real time
 - The conditions materialized again in the spring quarter, and virtual traders once again seized the opportunity to profit from the modeling inefficiency
 - In total, the modeling issue has increased virtual profits by nearly \$10 million in 2025
- We have recommended MISO address modeling differences at aggregated nodes to prevent this or suspend virtual trading at that the relevant locations in the meantime
 - MISO has implemented a near-term solution for this issue at this location, and we will be working with MISO as it evaluates long term solutions

Quarterly Summary of IMM Investigations

- We conducted multiple audits and investigations, including:
 - Nine units failing to follow dispatch instructions or economic curtailments
 - Five resources for inaccurate physical offer parameters
 - Five units for potential uneconomic production
 - Three units for potential physical withholding
- We recommended MISO sanction a unit for uneconomic production and are working on two more sanction recommendations
- We referred a market participant for a Duty of Candor Violation
- We continued to investigate past DR conduct
 - We referred the LMR to the right
 - MISO's DR filings will address our qualification, testing, gaming and penalty concerns

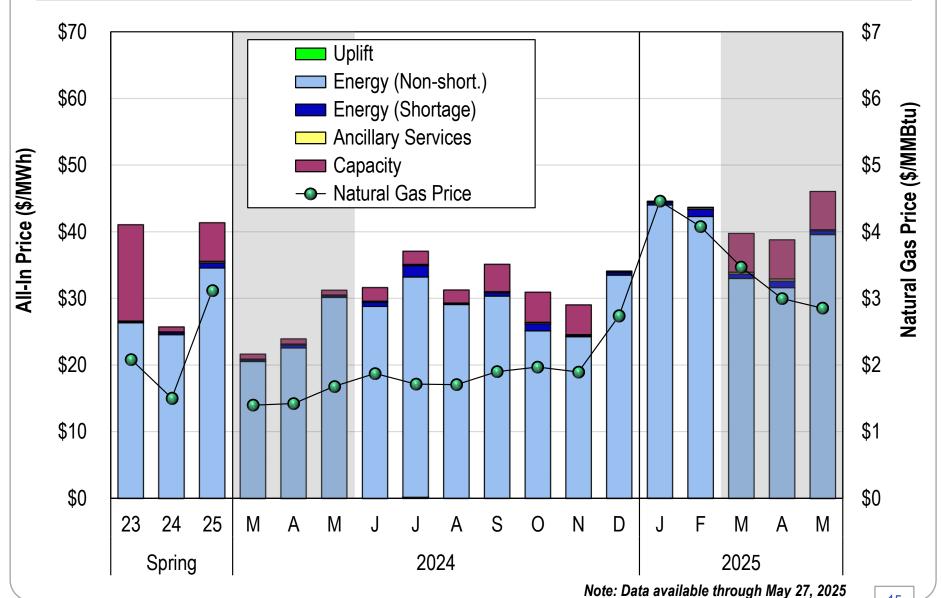
Submittals to External Entities and Other Issues

- During the Spring Quarter, we:
 - Responded to several FERC questions related to prior referrals and FERC investigations and responded to requests for information on market issues
 - Presented the IMM Winter Quarterly report to the MSC
 - We worked with MISO on recommended operational improvements, notably MISO's offset tool calculator
- We continued to investigate potential tariff violations in the market-tomarket coordination of congestion between SPP, PJM and MISO
- We also continued to support MISO's filings to FERC. We:
 - Provided an affidavit in support of MISO's filing to improve Load Modifying Resource (LMR) and Emergency Resource accreditation reforms
 - Supported MISO's filing to eliminate cross-registration of LMRs as Emergency Demand Resources and Demand Response Resources
 - Supported MISO's filing to eliminate mock testing of demand resources and to improve the penalties for poor performance when LMRs are called upon

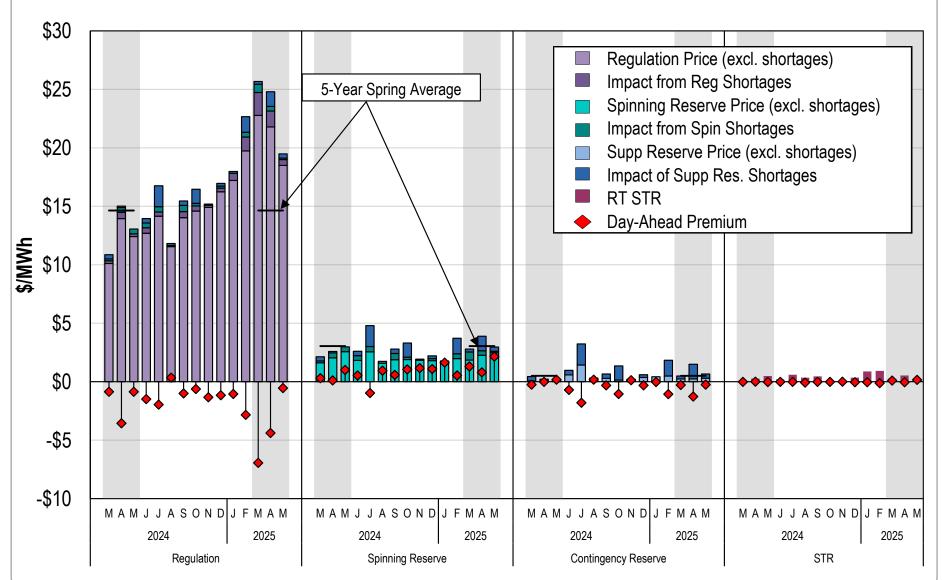


Quarterly Market Results: Spring 2025

POTOMAC ECONOMICS

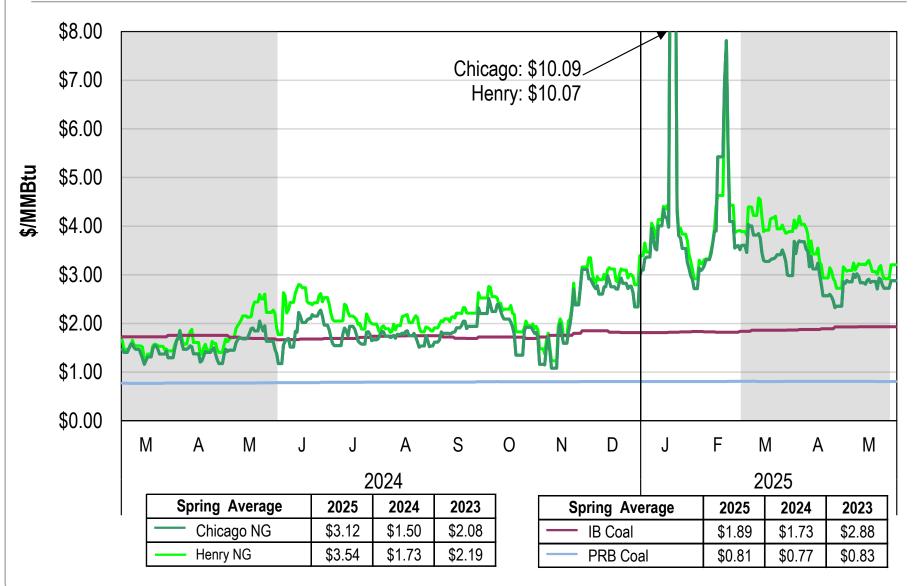

Spring 2023 – 2025

POTOMAC
 ECONOMICS


Spring 2023 – 2025

Ancillary Services Prices

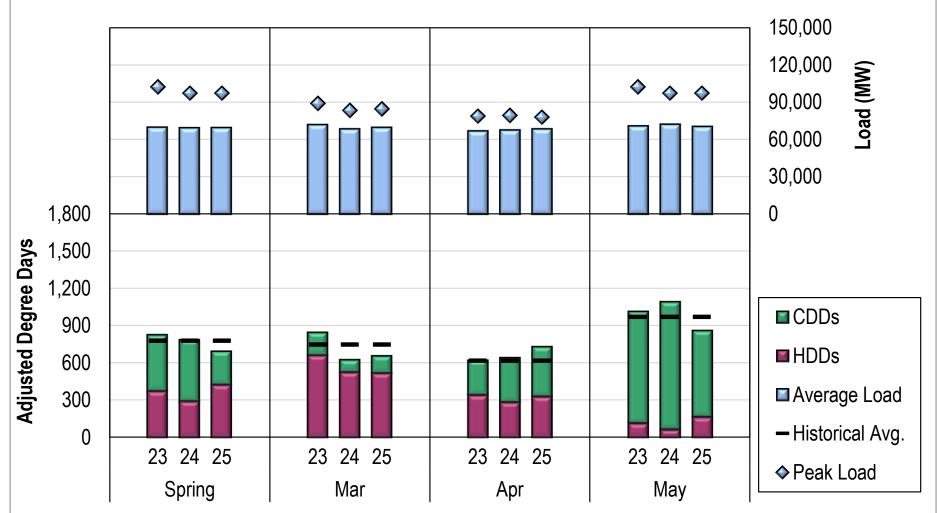
POTOMACECONOMICS


Spring 2023–2025

MISO Fuel Prices

POTOMAC ECONOMICS

2023-2025



Note: Data available through May 28, 2025

Load and Weather Patterns

POTOMAC ECONOMICS

Spring 2023–2025

<u>Notes</u>: Midwest degree day calculations include four reprsentative cities: Indianapolis, Detroit, Milwaukee and Minneapolis. The South region includes Little Rock and New Orleans.

Capacity, Energy and Price Setting Share

POTOMAC ECONOMICS

Spring 2024–2025

Unforced Ca			pacity		Energy (Output	Price Setting			
Spring	Total (MW)	Share (%)		Share (%)		SMP (%)		LMP (%)	
	2024	2025	2024	2025	2024	2025	2024	2025	2024	2025
Nuclear	10,382	9,625	8%	8%	14%	15%	0%	0%	0%	0%
Coal	38,075	36,004	29%	28%	21%	26%	28%	24%	69%	64%
Natural Gas	64,038	62,148	49%	49%	38%	30%	72%	73%	86%	86%
Oil	1,416	1,348	1%	1%	0%	0%	0%	0%	0%	0%
Hydro	4,024	3,799	3%	3%	2%	2%	0%	0%	1%	1%
Wind*	7,499	5,959	6%	5%	20%	21%	0%	2%	77%	66%
Solar	3,540	7,020	3%	6%	2%	5%	0%	0%	20%	24%
Other	647	1,036	0%	1%	2%	0%	0%	0%	1%	2%
Total	129,621	126,940								

^{*} The capacity factor for wind dropped from 23% in spring 2024 to 18% in spring 2025.

IMM Summer Assessment

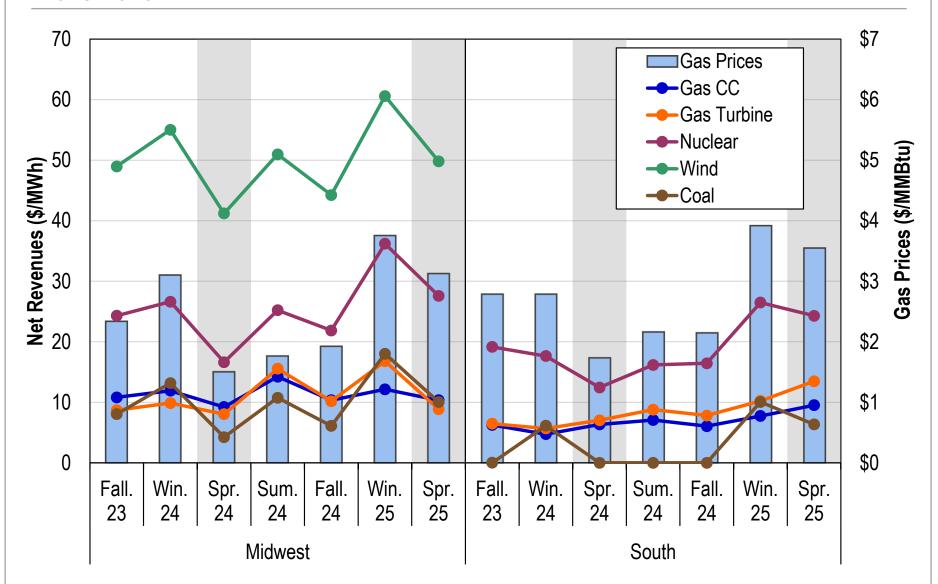
POTOMAC ECONOMICS

Summer 2025 Planning Reserve Margins

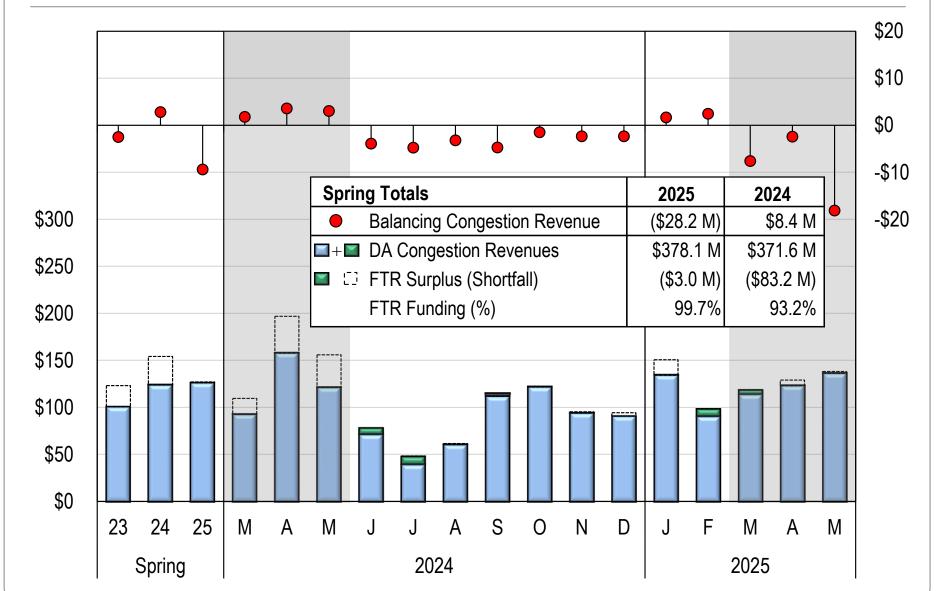
	Alternative IMM Scenarios*				
	Base	Realistic	Realistic	High Temper	ature Cases
	Scenario	Scenario	<=2HR	Realistic	Realistic
	Scenario	Scenario	\-211K	Scenario	<=2HR
Load					
Base Case	122,633	122,633	122,633	122,633	122,633
High Load Increase	-	-	-	7,338	7,338
Total Load (MW)	122,603	122,603	122,603	129,970	129,970
Generation					
Internal Generation Excluding Exports	134,812	134,812	134,812	134,812	134,812
BTM Generation	4,479	4,479	3,575	4,479	3,575
Unforced Outages and Derates**	(1,118)	(11,174)	(11,174)	(18,774)	(18,774)
Adjustment due to Transfer Limit	(5,635)	-	-	-	-
Total Generation (MW)	132,538	128,117	127,213	120,517	119,613
Imports and Demand Response***					
Demand Response (ICAP)	9,655	7,241	3,052	7,241	3,052
Firm Capacity Imports	3,577	3,577	3,577	3,577	3,577
Margin (MW)	23,168	16,333	11,240	1,365	(3,728)
Margin (%)	18.9%	13.3%	9.2%	1.1%	-2.9%
Expected Capacity Uses and Additions					
Expected Forced Outages****	(6,965)	(5,769)	(5,769)	(5,769)	(5,769)
Non-Firm Net Imports in Emergencies	4,351	4,351	4,351	4,351	4,351
Expected Margin (MW)	20,554	14,914	9,822	(53)	(5,146)
Expected Margin (%)	16.8%	12.2%	8.0%	0.0%	-4.0%

^{*} Assumes 75% response from DR.

^{**} Base scenario shows approved planned outages for summer 2025. Realistic cases use historical averages during peak summer hours. High temp. cases are based upon MISO's 2025 Summer Readiness.


^{***} Cleared amounts for the Summer Season of the 2025/2026 planning year.

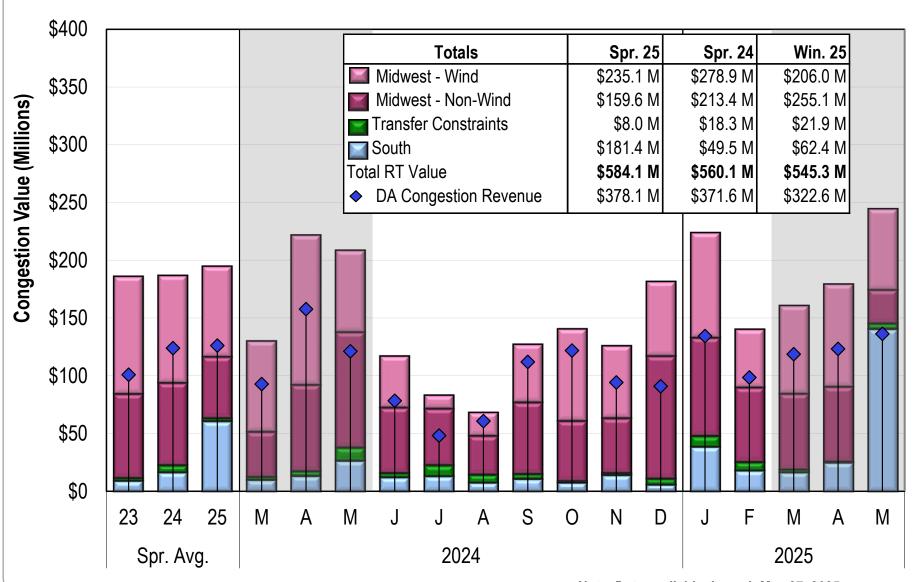
^{****} Base scenario assumes 5% forced outage rate for internal and BTM generation. Alternative cases use historical average forced outages/derates during peak summer hours.


Net Revenues by Technology

POTOMAC ECONOMICS

2023-2025

Day-Ahead and Balancing Congestion and FTR Funding **ECON**

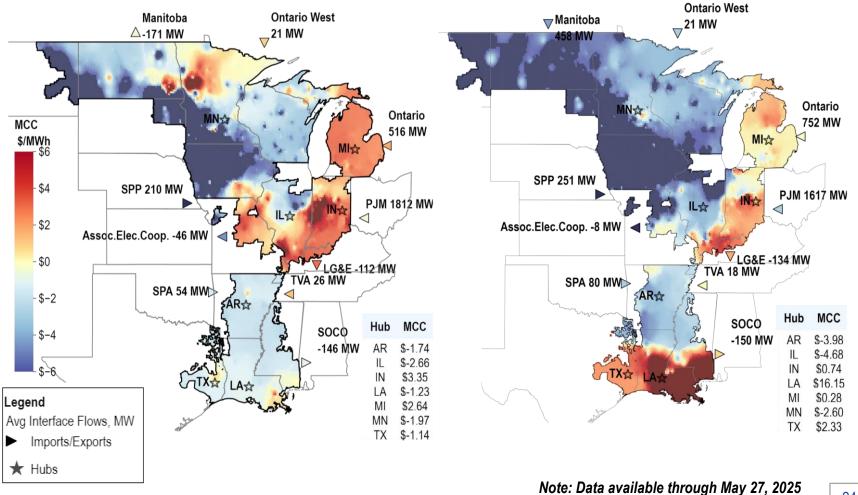


Note: Data available through May 28, 2025

Value of Real-Time Congestion

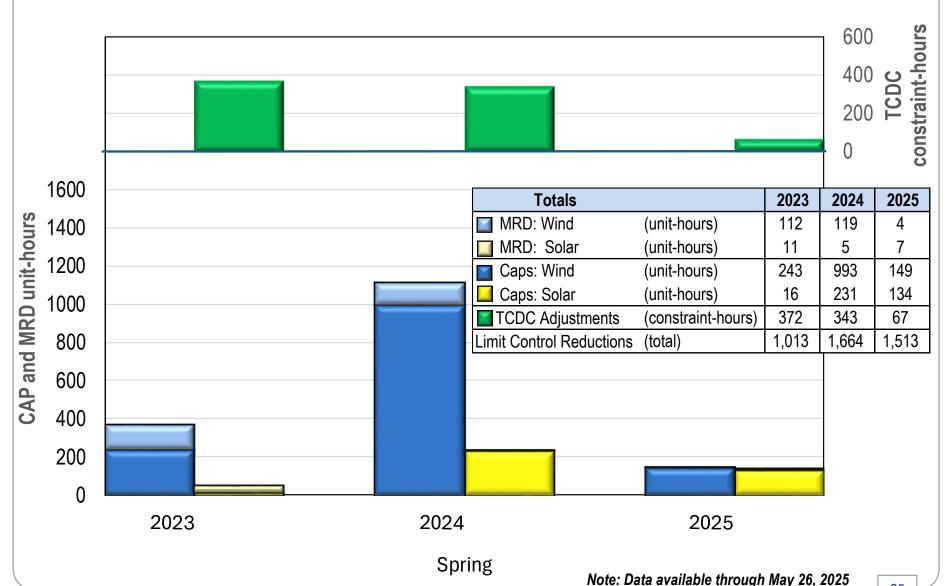
POTOMAC
 ECONOMICS

Spring 2023-2025


Average Real-Time Congestion Components

- POTOMAC ECONOMICS

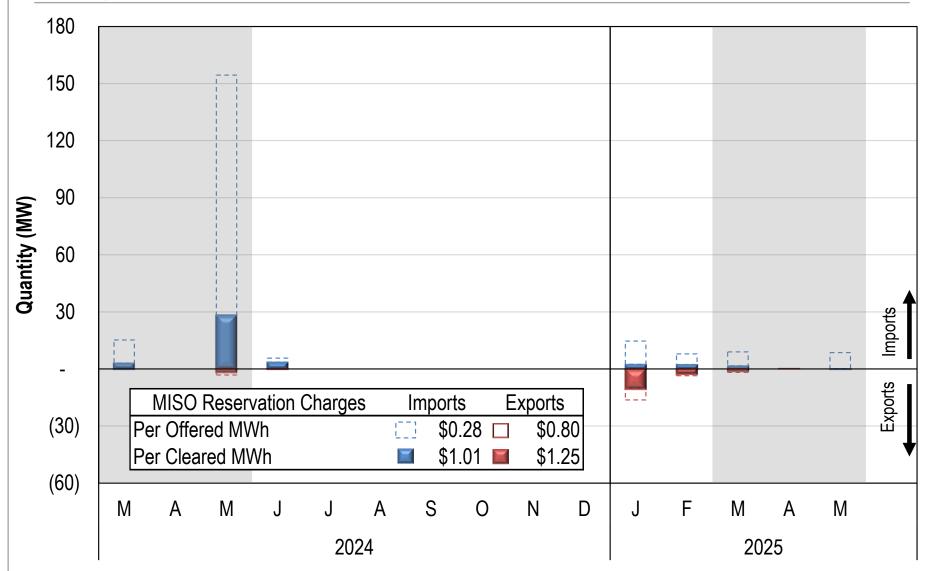
Spring 2024 – 2025


Spring 2024

Spring 2025

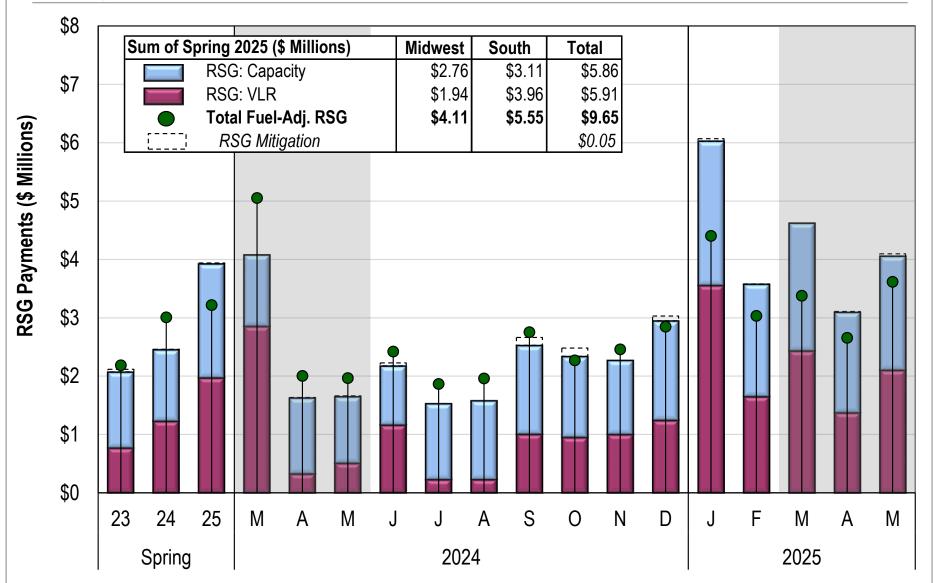
- POTOMAC • ECONOMICS

Benefits of Ambient-Adjusted and Emergency Ratings


Spring 2024–2025

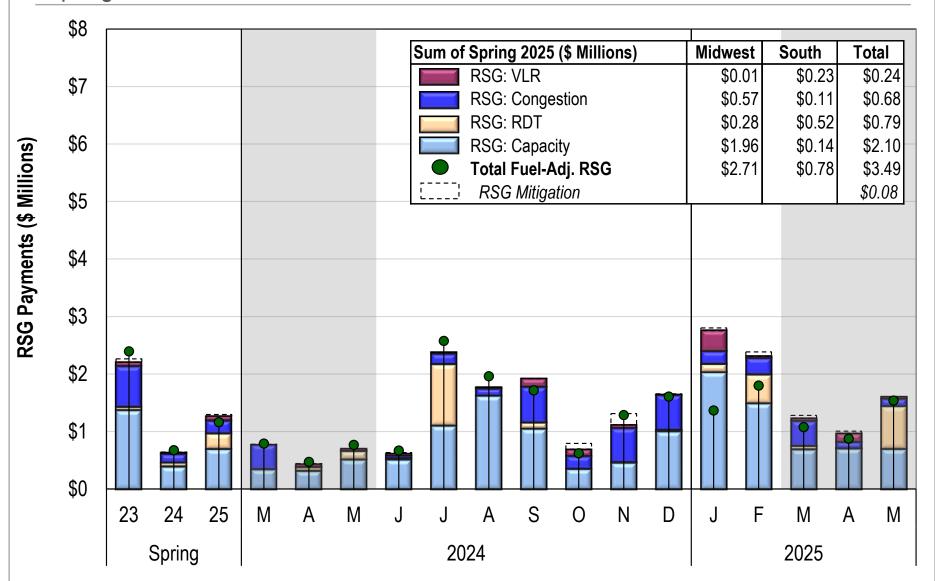
		Sav	ings (\$ Millions			
	Spring	Ambient Adj. Ratings	Emergency Ratings	Total	# of Facilitesfor 2/3of Savings	Share of Congestion
2024	Midwest	\$35.0	\$24.42	\$59.4	14	11.3%
	South	\$0.6	\$1.81	\$2.4	2	4.5%
	Total	\$35.6	\$26.2	\$61.8	16	10.7%
2025	Midwest	\$24.2	\$16.99	\$41.1	8	10.6%
	South	\$1.8	\$7.63	\$9.5	2	5.6%
	Total	\$26.0	\$24.6	\$50.6	10	9.0%

POTOMACECONOMICS



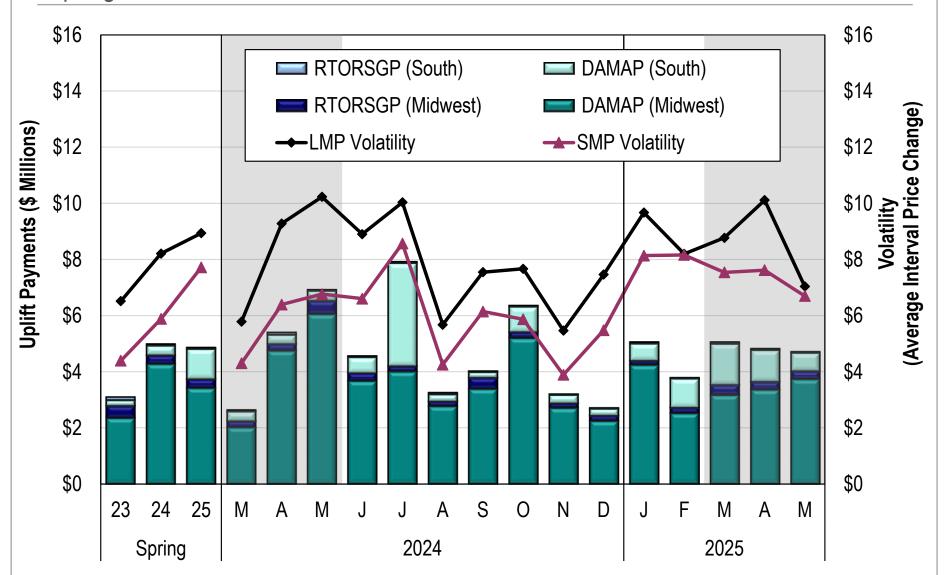
Day-Ahead RSG Payments

POTOMAC ECONOMICS


Spring 2023–2025

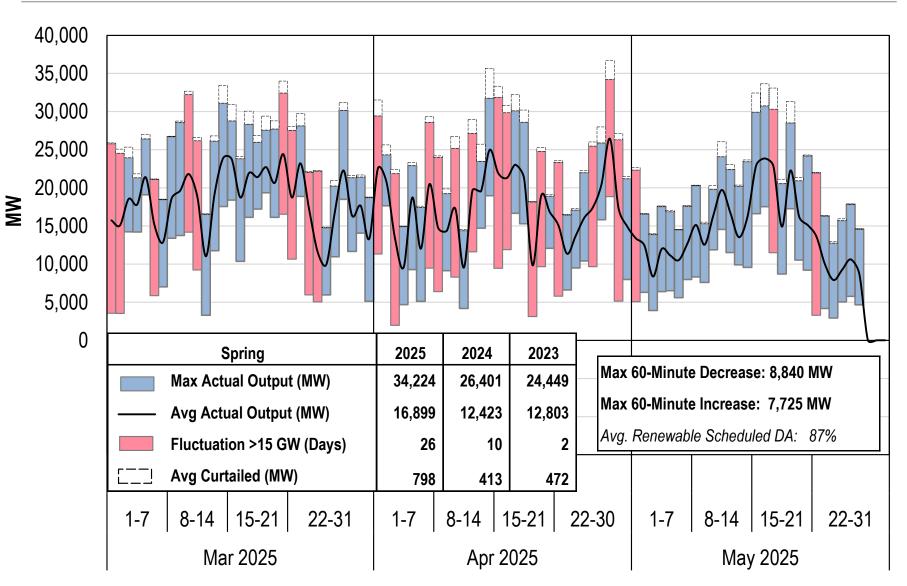
Real-Time RSG Payments

POTOMACECONOMICS


Spring 2024–2025

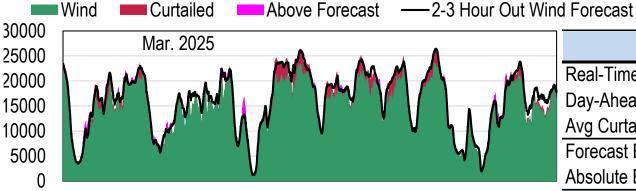
Price Volatility Make Whole Payments

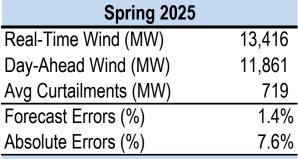
POTOMAC ECONOMICS


Spring 2023–2025

Wind and Solar Output in Real Time

- POTOMAC ECONOMICS


Daily Range and Average



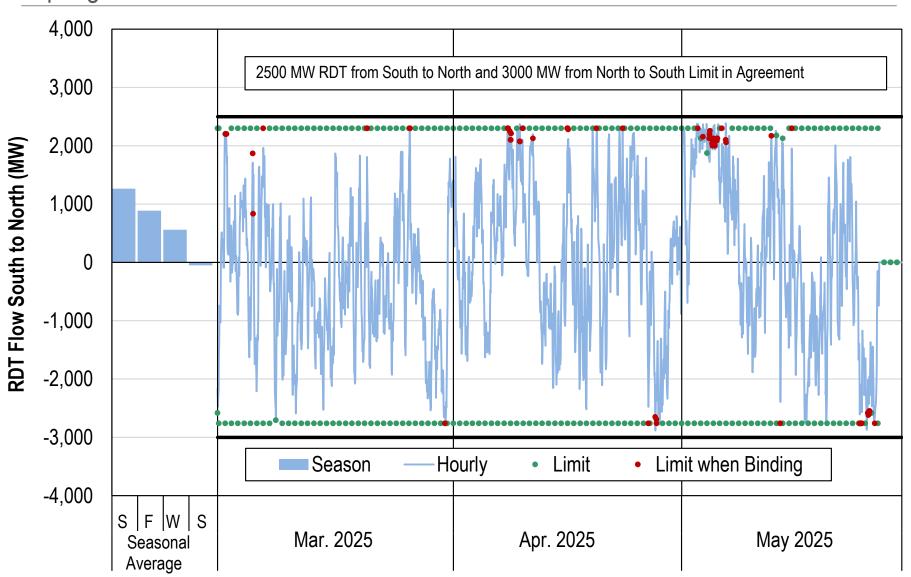
Wind Forecast and Actual Output

POTOMAC ECONOMICS

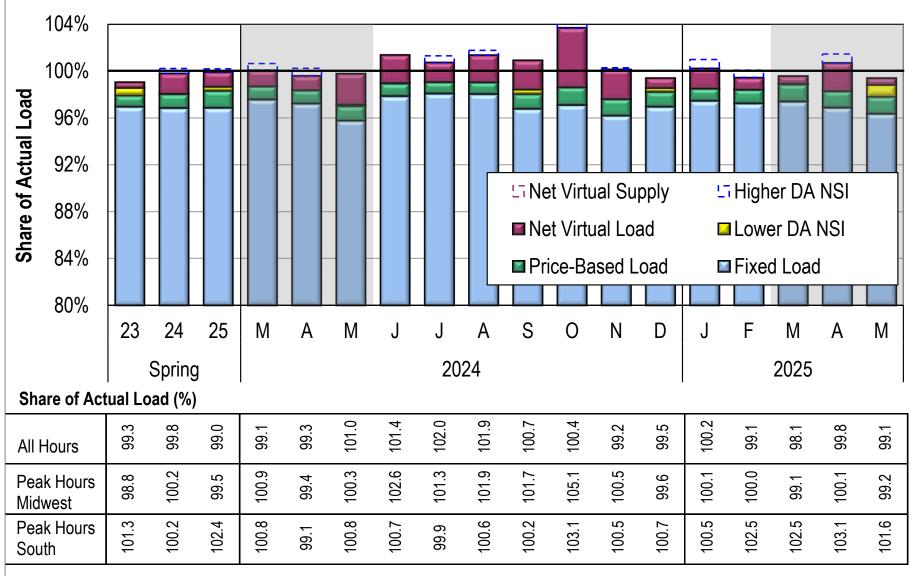
Spring 2025

Apr. 2025	Δ	
MAM		

Spring 2024	
Real-Time Wind (MW)	13,631
Day-Ahead Wind (MW)	12,214
Avg Curtailments (MW)	985
Forecast Errors (%)	-0.7%
Absolute Errors (%)	7.7%


May 2025	la
M M M M	V V A AMA
, Mr. A. A. A.	, MANATA I A

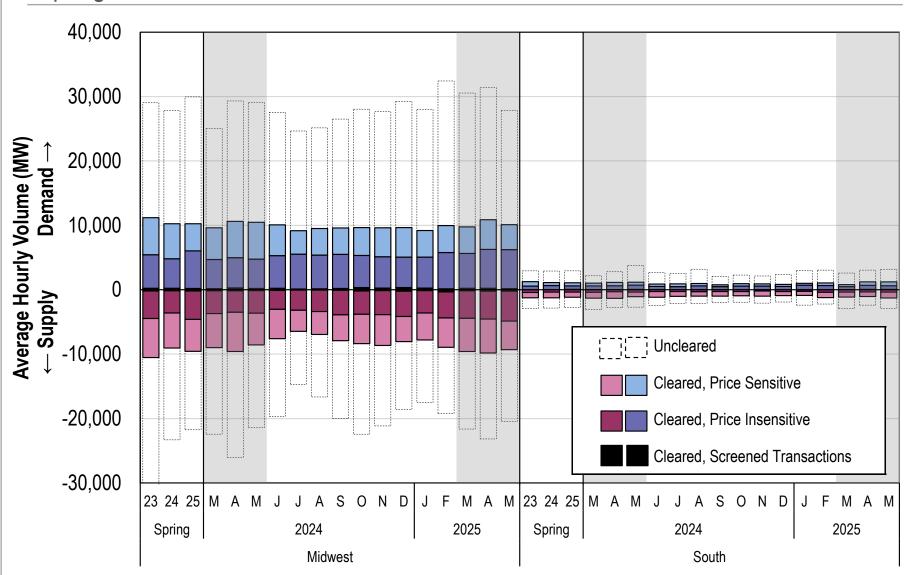
Windter 2025	
Real-Time Wind (MW)	13,625
Day-Ahead Wind (MW)	11,712
Avg Curtailments (MW)	508
Forecast Errors (%)	2.1%
Absolute Errors (%)	9.1%



Note: Data available through May 27, 2025

Day-Ahead Peak Hour Load Scheduling

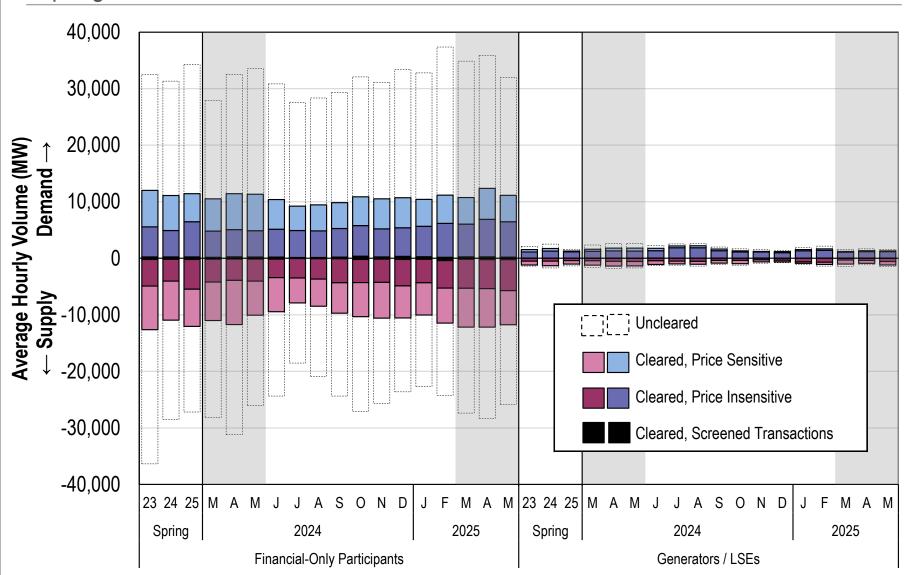
- POTOMAC - ECONOMICS


Spring 2023–2025

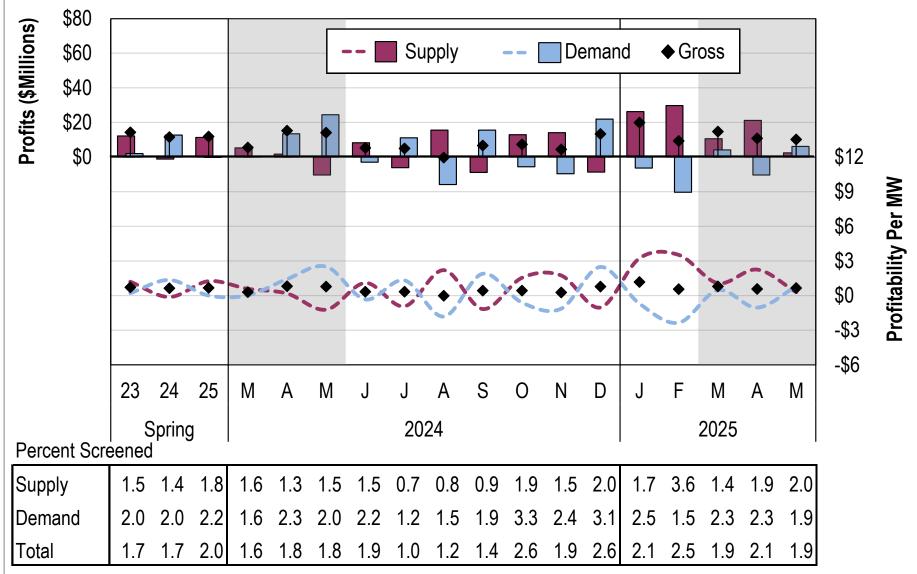
Virtual Load and Supply

- POTOMAC -ECONOMICS

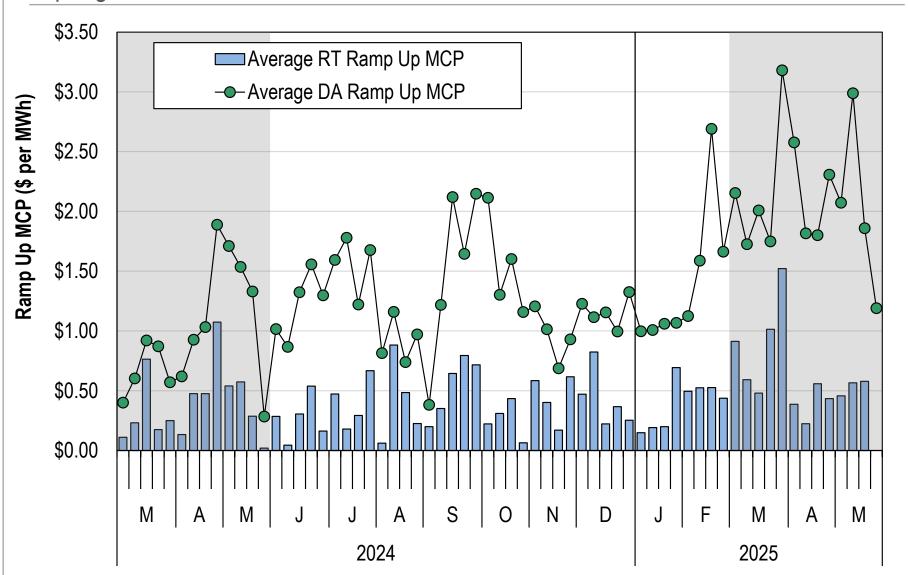
Spring 2023–2025



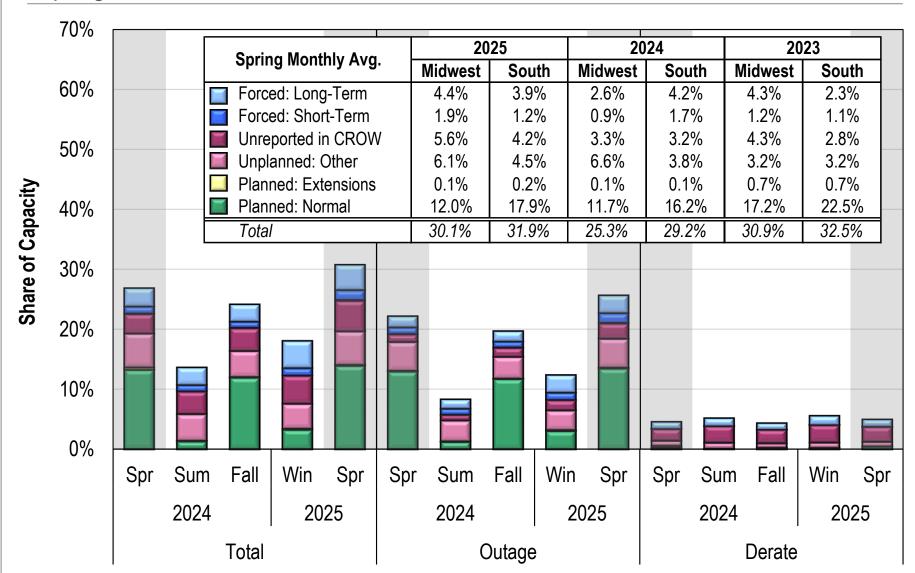
Note: Data available through May 27, 2025


POTOMAC ECONOMICS

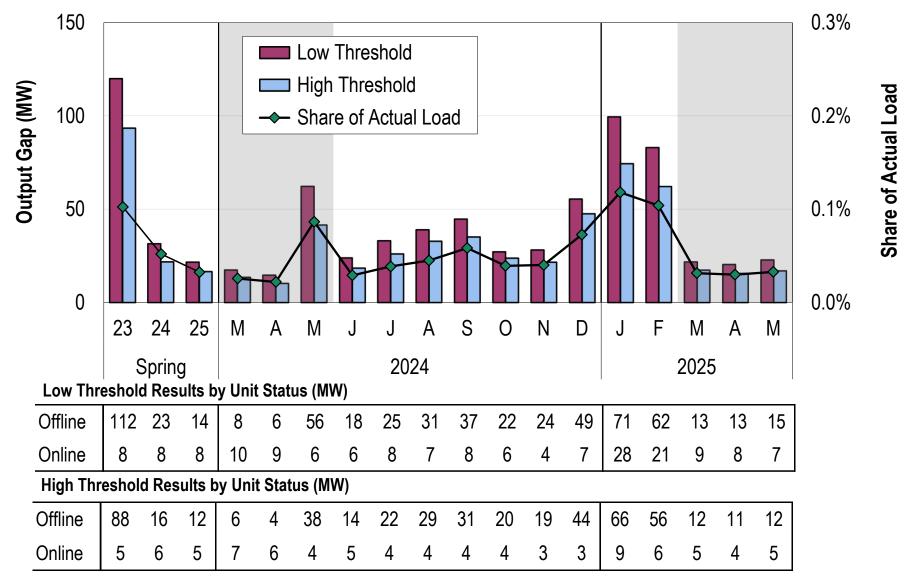
Spring 2023–2025


Virtual Profitability

POTOMAC ECONOMICS

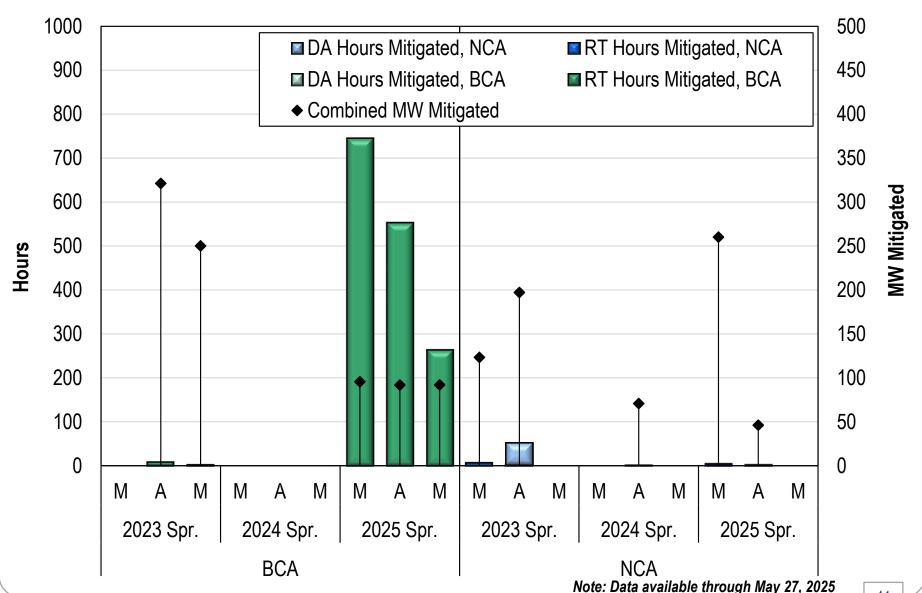


POTOMAC ECONOMICS


Generation Outages and Deratings

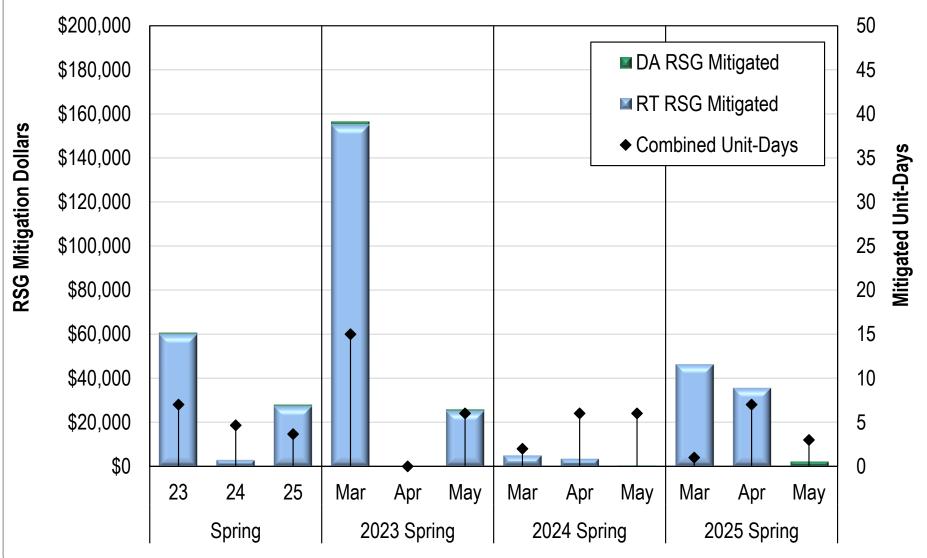
- POTOMAC ECONOMICS

Monthly Output Gap


POTOMAC ECONOMICS

Day-Ahead And Real-Time Energy Mitigation

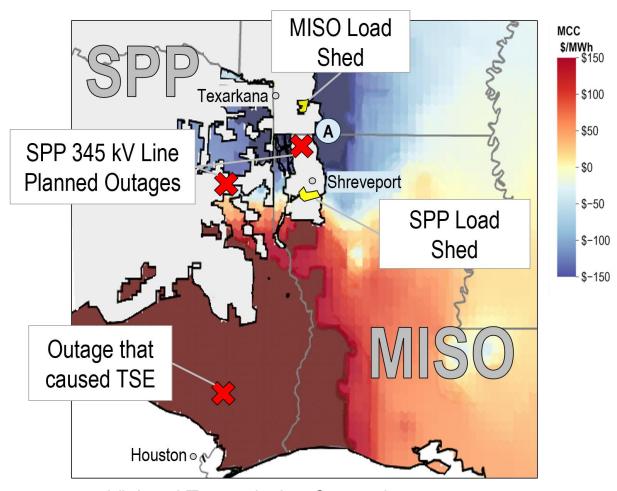
POTOMACECONOMICS


Spring 2023 - 2025

Day-Ahead and Real-Time RSG Mitigation

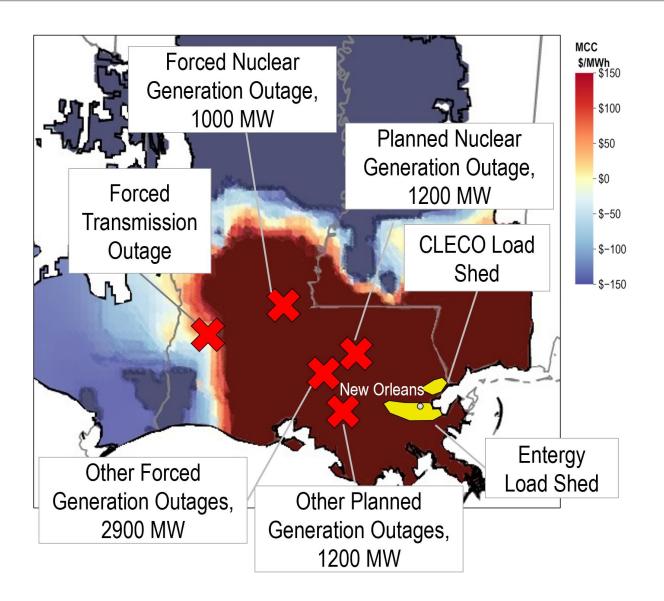
POTOMACECONOMICS

Spring 2023 - 2025



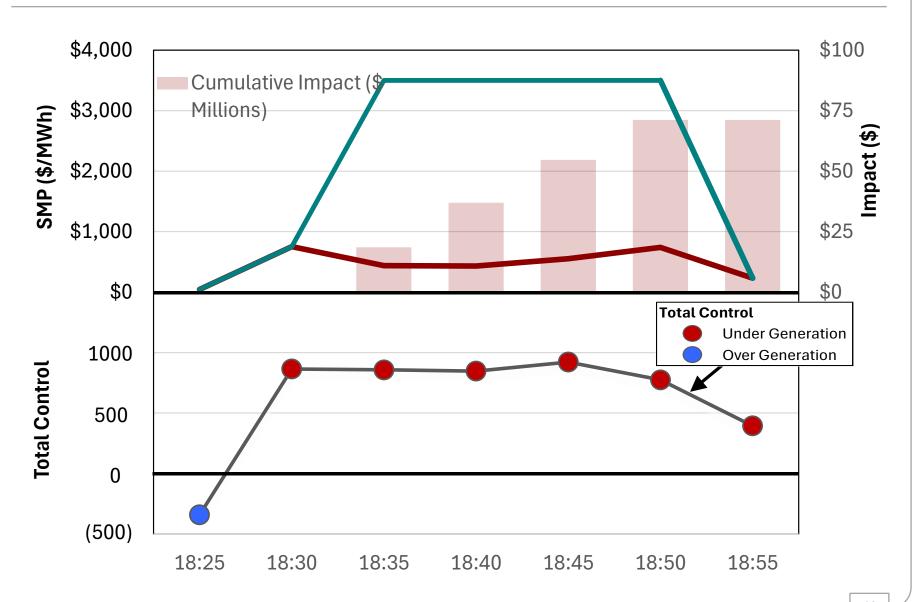
Other Key Market Events

April 2 Load Shed Event in MISO and SPP

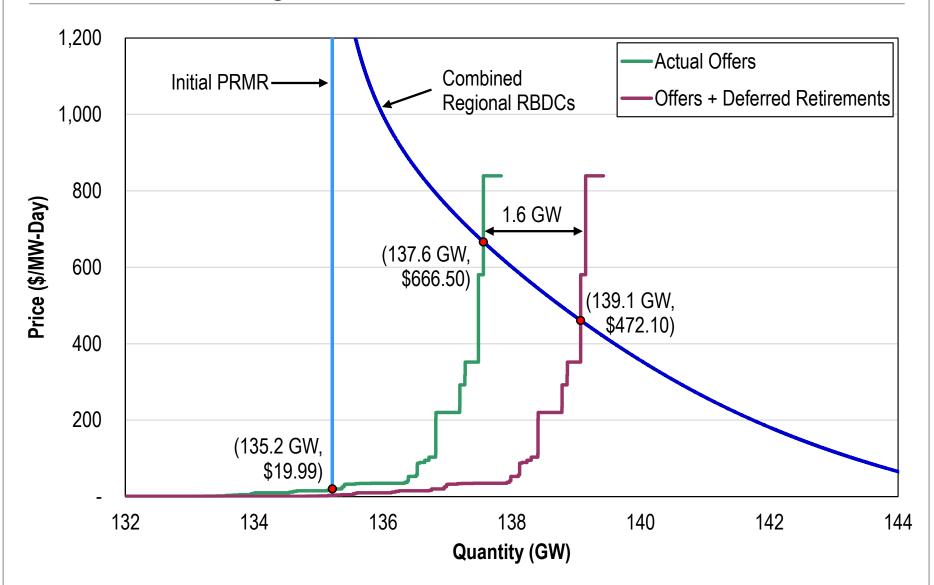


Violated Transmission Constraint

A Harvey Couch - Lewisville

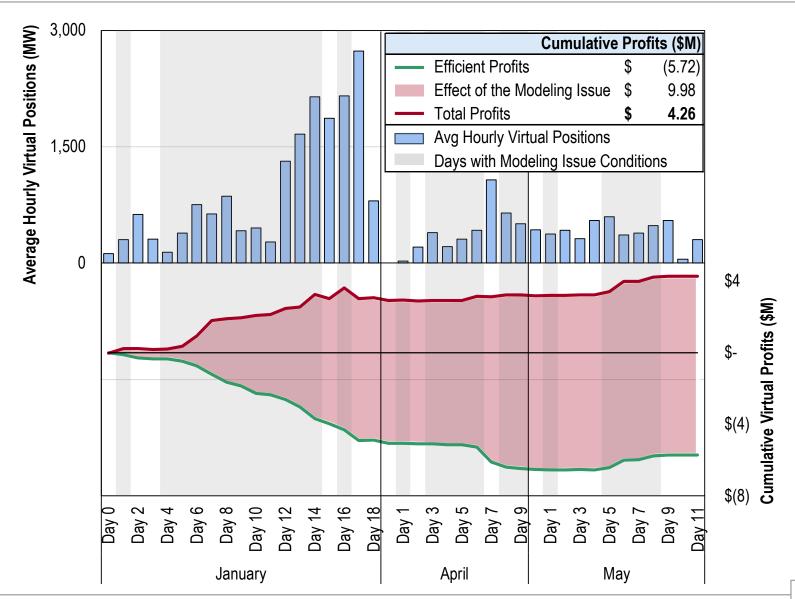


May 25 Load Shed Event in MISO


Load Adjustments and Price Impacts

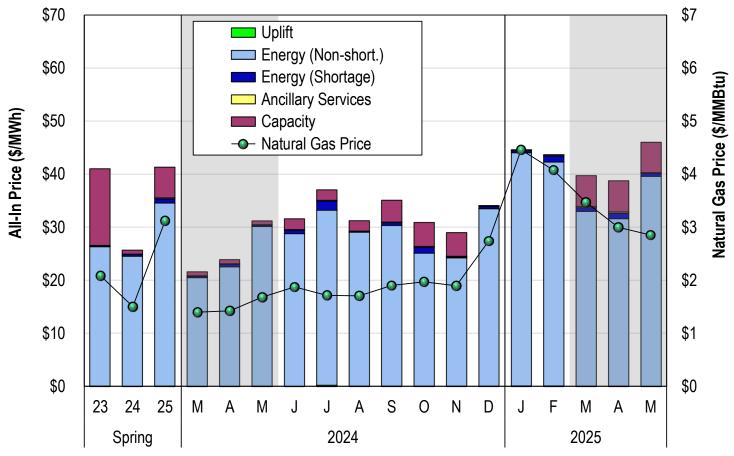
2025–26 Planning Resource Auction

POTOMACECONOMICS


Summer 2025 Clearing versus Alternative

Virtual Trading around Modeling Inconsistency

Hourly Virtual Positions and Cumulative Revenues

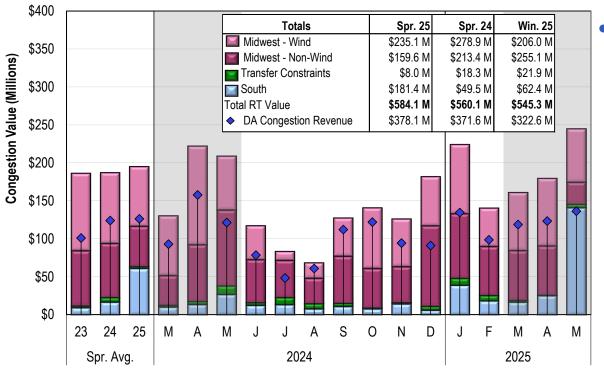

Slides Reproduced for the Board of Directors

All-In Price

POTOMAC • ECONOMICS

Spring 2023 – 2025

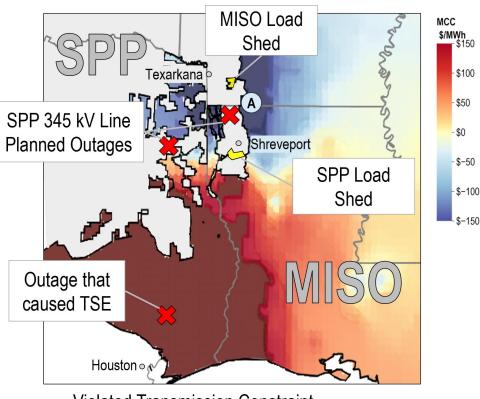
- Energy prices rose 42 percent compared to last Spring
 - Gas prices doubled, up from historically low values at Henry Hub last spring
 - Peak load fell one percent and average load was the same as last year



Note: Data available through May 27, 2025

Value of Real-Time Congestion

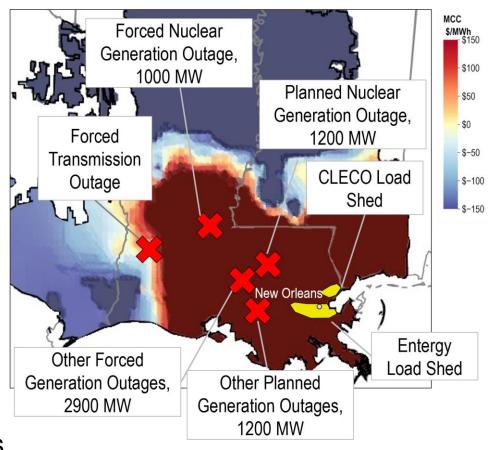
- Despite higher gas prices and the severe congestion in the South, dayahead and real-time congestion rose just 2 and 4 percent, respectively
 - Congestion in the South was 267 percent higher than last spring
 - MISO experienced multiple episodes of severe weather MISO declared two transmission emergencies that led to load shedding in the South


- From May 21-26, MISO incurred over \$105 million of congestion in the South
 - More than half was on May 25 when outages reduced flows into the Amite South load pocket and led to an emergency and load shedding

Note: Data available through May 27, 2025

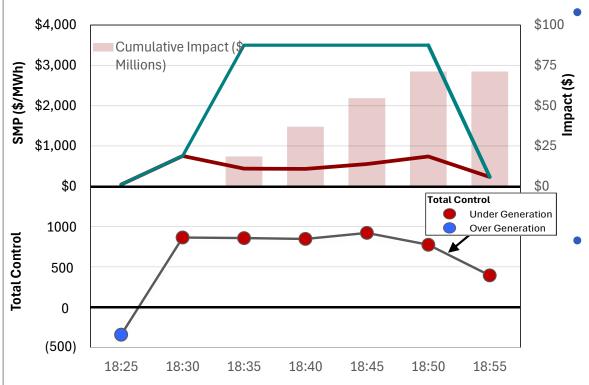
April 2 Load Shed Event in MISO and SPP

- Weather-related challenges and voltage issues in MISO and SPP led to 27 MW of load shed in MISO South on April 2nd near the SPP seam
 - Severe storms lasting 4 days caused widespread transmission outages in MISO South that were compounded by major SPP planned outages
- MISO unsuccessfully attempted to price the load shed at VOLL
- MISO's situational awareness was key for MISO and SPP
 - MISO directed load shedding in both MISO and SPP after a key line tripped
- SPP and MISO are working together to learn from this event


Violated Transmission Constraint

A Harvey Couch - Lewisville

May 25 Load Shed Event in MISO


- Forced transmission and generation outages impacted Amite South and MISO shed 600 MW of load in the Amite South Load Pocket
 - This event was caused by an unlikely combination of outages
- MISO faced some issues:
 - Some generators did not follow dispatch into emerg. ranges
 - LMRs were not deployed due to limited location information
 - A unit was committed that was likely advisable to decommit
- We recommend MISO develop:
 - Penalty provisions for nonperformance in emerg. ranges
 - Local STR for load pockets
 - Process to decommit resources

Load Adjustments and Price Impacts

- MISO can adjust the real-time load in the dispatch with a "load offset" to account for unmodeled deviations and balance the system
- On March 10, over-forecasted wind and solar down-ramp caused the MISO dispatch to run out of rampable energy to meet the system needs

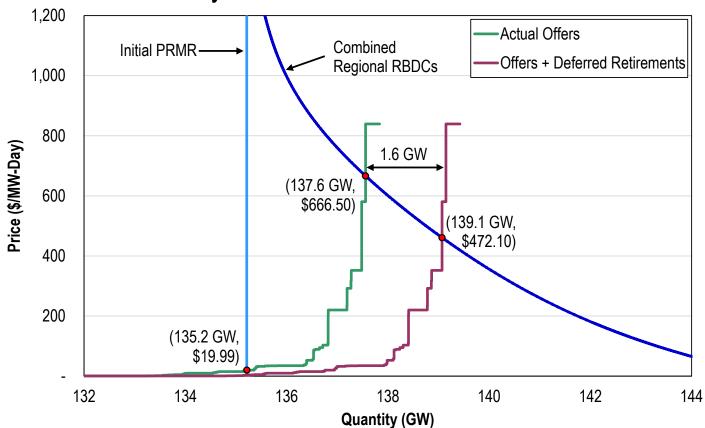
MISO used lower offsets than were warranted that:

- Eliminated efficient \$3500 per MWh shortage pricing
- Caused a \$71 million market impact
- Prices should not influence the offset selection
 - MISO agrees and is working with us to improve the offset procedures

Quarterly Highlights: Spring 2025

2025–2026 Planning Resource Auction Results

- MISO cleared its first seasonal PRA under the RBDC in April
 - Auction clearing prices (ACP) averaged nearly \$215 per MW-day for the year,
 with the lowest prices in the winter and highest in summer
- The summer price of \$666 per MW-day accurately signals the tightening margin, compared to \$20 per MW-day under a vertical demand curve


				Prices (\$/MW-Day)		Excess Cleared	
Season	Capacity Procured	Offered Not Cleared	LOLE Target	Rest of Market	MISO South	System	South
Summer 25	137,559	277	0.10	\$666.50		1.017	1.008
Fall 25	132,516	4,260	0.01	\$91.60	\$74.09	1.023	1.002
Winter 25/26	131,000	3,262	0.01	\$33.20		1.051	1.075
Spring 26	130,700	5,361	0.01	\$69.88		1.012	0.997
PRA Year	132,944	3,290		\$215.30	\$210.92	1.026	1.021

2025–26 Planning Resource Auction

Summer Season

- 2.3 GW (1.7% surplus) was procured above the minimum in the summer, which is valuable for reliability and lowered the clearing price
- Deferral of the 1.6 GW of retirements to the fall would have lowered prices to \$472/MW-day – DOE has ordered 1.2 GW to defer to the fall

POTOMAC • ECONOMICS

IMM Summer Assessment

Summer 2025 Planning Reserve Margins

		Alternative IMM Scenarios*				
	Base	Realistic	Realistic	High Temperature Cases Realistic Realistic		
	Scenario	Scenario	<=2HR	Scenario	<=2HR	
Load						
Base Case	122,633	122,633	122,633	122,633	122,633	
High Load Increase	-	-	-	7,338	7,338	
Total Load (MW)	122,603	122,603	122,603	129,970	129,970	
Generation						
Internal Generation Excluding Exports	134,812	134,812	134,812	134,812	134,812	
BTM Generation	4,479	4,479	3,575	4,479	3,575	
Unforced Outages and Derates**	(1,118)	(11,174)	(11,174)	(18,774)	(18,774)	
Adjustment due to Transfer Limit	(5,635)	-	-	-	-	
Total Generation (MW)	132,538	128,117	127,213	120,517	119,613	
Imports and Demand Response***						
Demand Response (ICAP)	9,655	7,241	3,052	7,241	3,052	
Firm Capacity Imports	3,577	3,577	3,577	3,577	3,577	
Margin (MW)	23,168	16,333	11,240	1,365	(3,728)	
Margin (%)	18.9%	13.3%	9.2%	1.1%	-2.9%	
Expected Capacity Uses and Additions						
Expected Forced Outages****	(6,965)	(5,769)	(5,769)	(5,769)	(5,769)	
Non-Firm Net Imports in Emergencies	4,351	4,351	4,351	4,351	4,351	
Expected Margin (MW)	20,554	14,914	9,822	(53)	(5,146)	
Expected Margin (%)	16.8%	12.2%	8.0%	0.0%	-4.0%	

^{*} Assumes 75% response from DR.

- Including typical planned and forced outages and imports produces a capacity margin of 12.2%
- Hot temps could drop the margin to zero, but not likely and imports would respond
- MISO is more than sufficient to satisfy its reliability needs
- NERC Long Term Reliability findings are not accurate
 - Understates MISO's capacity by > 8 GW
 - Unrealistic potential nearterm fossil retirements
 - Does not recognize the size and value of MISO's import capability

^{**} Base scenario shows approved planned outages for summer 2025. Realistic cases use historical averages during peak summer hours. High temp. cases are based upon MISO's 2025 Summer Readiness.


^{***} Cleared amounts for the Summer Season of the 2025/2026 planning year.

^{****} Base scenario assumes 5% forced outage rate for internal and BTM generation. Alternative cases use historical average forced outages/derates during peak summer hours.

Quarterly Summary of IMM Investigations

- We conducted multiple audits and investigations, including:
 - Nine units failing to follow dispatch instructions or economic curtailments
 - Five resources for inaccurate physical offer parameters
 - Five units for potential uneconomic production
 - Three units for potential physical withholding
- We recommended MISO sanction a unit for uneconomic production and are working on two more sanction recommendations
- We referred a market participant for a Duty of Candor Violation
- We continued to investigate past DR conduct
 - We referred the LMR to the right
 - MISO's DR filings will address our qualification, testing, gaming and penalty concerns

Submittals to External Entities and Other Issues

- During the Spring Quarter, we:
 - Responded to several FERC questions related to prior referrals and FERC investigations and responded to requests for information on market issues
 - Presented the IMM Winter Quarterly report to the MSC
 - Worked with MISO on recommended operational improvements, notably MISO's offset tool calculator
- We continued to investigate potential tariff violations in the market-tomarket coordination of congestion between SPP, PJM and MISO
- We also continued to support MISO's filings to FERC. We:
 - Provided an affidavit in support of MISO's filing to improve Load Modifying Resource (LMR) and Emergency Resource accreditation reforms
 - Supported MISO's filing to eliminate cross-registration of LMRs as Emergency Demand Resources and Demand Response Resources
 - Supported MISO's filing to eliminate mock testing of demand resources and to improve the penalties for poor performance when LMRs are called upon

List of Acronyms

•	AAR	Ambient-Adjusted Ratings	•	ORDC	Operating Reserve Demand Curve
•	AMP	Automated Mitigation Procedures	•	PITT	Pseudo-Tie Issues Task Team
•	BCA	Broad Constrained Area	•	PRA	Planning Resource Auction
•	CDD	Cooling Degree Days	•	PVMWP	Price Volatility Make Whole Payment
•	CMC	Constraint Management Charge	•	RAC	Resource Adequacy Construct
•	CTS	Coordinated Transaction Scheduling	•	RDT	Regional Directional Transfer
•	DAMAP	Day-Ahead Margin Assurance Payment	•	RSG	Revenue Sufficiency Guarantee
•	DDC	Day-Ahead Deviation & Headroom Charge	•	RTORSGP	Real-Time Offer Revenue Sufficiency
•	DIR	Dispatchable Intermittent Resource			Guarantee Payment
•	HDD	Heating Degree Days	•	SMP	System Marginal Price
•	ELMP	Extended Locational Marginal Price	•	SOM	State of the Market
•	JCM	Joint and Common Market Initiative	•	STE	Short-Term Emergency
•	JOA	Joint Operating Agreement	•	STR	Short-Term Reserves
•	LAC	Look-Ahead Commitment	•	TLR	Transmission Loading Relief
•	LSE	Load-Serving Entities	•	TCDC	Transmission Constraint Demand Curve
•	M2M	Market-to-Market	•	UD	Uninstructed Deviation
•	MSC	MISO Market Subcommittee	•	VLR	Voltage and Local Reliability
•	NCA	Narrow Constrained Area	•	WUMS	Wisconsin Upper Michigan System

60