
 

Probabilistic Planning Methods:  
A Review of Methods Available to 
Transmission Planners 
 

Executive Summary 

Prepared for MISO 

August 2025 



  

Probabilistic Planning Methods: A Review of Methods Available to Transmission Planners 
   

1 

This white paper was prepared by: 

Kevin Steinberger 

Chris Herman 

Lakshmi Alagappan 

Edita Danielyan 

Will Beattie  



 

Probabilistic Planning Methods: A Review of Methods Available to Transmission Planners  2 

Table of Contents 

Introduction ____________________________________________________________________________ 3 
What is the Purpose of this White Paper? ________________________________________________ 4 
Why is Planning for Uncertainty Important? ______________________________________________ 4 
Project Overview ______________________________________________________________________ 5 

Overview of Modeling Frameworks ______________________________________________________ 5 
Model Types __________________________________________________________________________ 5 

Key Sources of Uncertainty in Transmission Planning ____________________________________ 7 
Key Sources of Uncertainty within Modeling Frameworks __________________________________ 9 

Industry Practices and Emerging Methods to Address Uncertainty _______________________ 10 
Deterministic Methods ________________________________________________________________ 10 
Probabilistic Methods _________________________________________________________________ 11 
Hybrid Methods ______________________________________________________________________ 12 
Coordination Between Modeling Frameworks ___________________________________________ 12 

Overview of Findings ___________________________________________________________________ 14 

Conclusion ____________________________________________________________________________ 19 

Technical Report ______________________________________________________________________ 20 



  

Probabilistic Planning Methods: A Review of Methods Available to Transmission Planners 
   

3 

Introduction 

The electricity industry is undergoing significant economic, policy, and technological 
transformations. Policies to drive greenhouse gas emissions reductions, coupled with technological 
progress, have led to substantial growth in renewable energy, as well as increased electrification of 
end uses in transportation, buildings, and industry. System planners are also facing unprecedented 
large load interconnection requests from data centers and industrial customers, whose magnitude 
and location are characterized by varying degrees of certainty. Additionally, extreme weather events 
are growing in both impact and frequency, increasing the importance of system resilience. These 
changes present opportunities for a cleaner, more resilient grid, but they also introduce profound 
challenges for transmission planning, which must now contend with an ever-increasing level of 
uncertainty and complexity. Despite this growing complexity, maintaining system reliability remains 
crucial, necessitating a move beyond traditional transmission planning approaches, which 
historically have primarily leveraged deterministic evaluation methods.  

In this context, probabilistic methods are being explored as a valuable tool within transmission 
planning for navigating uncertainty and ensuring a resilient and cost-effective grid. Probabilistic 
planning methods enable transmission planners to systematically account for variability and risk, 
offering a deeper understanding of potential outcomes and their likelihoods. Unlike deterministic 
methods, which produce a single, fixed outcome, probabilistic approaches account for uncertainty 
and produce a range of possible outcomes which each have an associated likelihood. These 
methods are crucial for effectively addressing inputs that may have a substantial range of 
uncertainty, allowing for a comprehensive assessment of potential outcomes that influence grid 
reliability and investment decisions. 

The importance of evaluating new methods is underscored by the unique challenges currently facing 
transmission planners. With diverse resource mixes, varied state-level policies, and vast geographic 
footprints, transmission planners and system operators must balance competing priorities, 
including implementation feasibility and stakeholder accessibility, while addressing the increasing 
complexity of its transmission network. Probabilistic methods have the potential to provide a 
structured approach to incorporating these various factors, offering valuable insights that improve 
decision-making and foster better stakeholder engagement. 

This white paper builds a foundation by examining current industry practices, along with a 
comprehensive exploration of probabilistic planning methods within the transmission planning 
process, detailing applications of these methods across power flow modeling, production cost 
analysis, and capacity expansion planning. Through real-world case studies and best practices, we 
illustrate how these methods can be effectively implemented to address key sources of uncertainty, 
such as outage & contingency risks, economic and policy variability, climate and weather impacts, 
and shifts in resource mix and demand. 
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What is the Purpose of this White Paper? 

Significant investments in the transmission system are expected in the coming decades; however, 
planners are facing increased complexity and uncertainty when trying to identify least-regret plans 
and the optimal timing for these investments. Increased reliability risks during times of correlated 
outages, weather dependence of renewable generation resources, higher demand-side uncertainty, 
frequency and intensity of extreme weather, and varying levels of policy ambition are all sources of 
uncertainty that must be considered. 

This white paper seeks to provide transmission planners and their stakeholders with a 
comprehensive understanding of probabilistic planning methods and their potential applications in 
transmission planning. The goal is to outline actionable steps to enhance transmission planning 
processes, ensuring they remain robust and adaptable in the face of increasing uncertainty. Key 
areas of focus include reliability planning, economic transmission planning, and resource (capacity) 
expansion planning, while examining the potential integration of probabilistic techniques to 
complement existing deterministic frameworks 

Through evaluation of probabilistic methods, transmission planners can position themselves as 
leaders in innovative transmission planning, ensuring that the grid remains reliable, resilient, and 
economically optimized in the face of growing uncertainty. This white paper establishes a framework 
for decision-makers, offering a detailed overview of existing and emerging probabilistic methods as 
well as actionable insights and recommendations. 

Why is Planning for Uncertainty Important? 

Transmission investments often require a much longer lead time relative to other assets, resulting in 
an even greater degree of uncertainty that must be considered during a typical transmission planning 
horizon. On average, the build time for a transmission line exceeds 10 years,1 and planners often 
look more than 20 years into the future to ensure that the long-term needs of their system are met.2 
Effectively planning for key sources of near-term and long-term uncertainty requires methods which 
incorporate technological, policy, and economic uncertainty that could impact transmission system 
investments, as well as ensuring that the system continues to be reliable across a broad range of 
weather conditions.   

Addressing uncertainty has always been central to system planning; however, the acceleration of 
electrification-driven demand growth and integration of renewable generation resources over the 
last decade has led to an increase in both the scope and complexity of transmission planning. 
Uncertainty driven by economic and policy changes as well as weather, climate change, 
contingencies and correlated outage risks must be understood and planned for to maintain a cost-
effective and reliable electric system.    

 

1 IEA - Average lead times to build new electricity grid assets in Europe and the United States, 2010-2021   
2 FERC Order 1920 requires that long-term planning for regional transmission facilities be conducted over a 20-year 

period: https://www.ferc.gov/news-events/news/ferc-strengthens-order-no-1920-expanded-state-provisions.  

https://www.iea.org/data-and-statistics/charts/average-lead-times-to-build-new-electricity-grid-assets-in-europe-and-the-united-states-2010-2021
https://www.ferc.gov/news-events/news/ferc-strengthens-order-no-1920-expanded-state-provisions
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Additionally, transmission infrastructure projects require significant capital expenditure, so system 
planners prioritize the identification of least-regret investments which provide the most value across 
a wide range of possible future uncertainties. A lengthy planning horizon, coupled with significant 
capital outlay, requires planners to identify transmission investments that perform well across a 
diverse set of futures, which maximizes the benefits relative to the required investment. By 
understanding the range of and impacts of uncertainties, planners can minimize risks, maximize 
benefits, and ensure plans are both flexible and adaptable to meet long-term system needs. 

Project Overview 

E3 conducted a comprehensive review of deterministic and probabilistic methods and their 
applications in Power Flow, Production Cost, and Capacity Expansion modeling. The literature 
review examined existing and emerging methods across ISO, RTO, and utility planning processes, as 
well as methods in use or under exploration in academia and industry. E3 also held a series of 
interviews with experts and thought leaders across North America, including planning departments, 
academic researchers, and other industry practitioners, to discuss methods for addressing 
uncertainty. These topics were further discussed during a two-day symposium, jointly held by MISO 
and E3 in November 2024, with MISO’s stakeholders and other experts from across the industry. The 
findings of the research, interviews, and the symposium are summarized within this executive 
summary and the accompanying Technical Report. All references and sources supporting the 
methods and approaches discussed in this Executive Summary are  detailed in the Technical Report. 

Overview of Modeling Frameworks 

Model Types 

Before introducing methods for addressing uncertainty, it is important to provide a brief overview of 
the distinct interrelated modeling frameworks that are commonly used in transmission planning. In 
general, quantitative transmission planning methods and processes can be categorized in one of 
three key modeling frameworks: Power Flow, Production Cost, and Capacity Expansion. The 
following section describes each of these modeling frameworks in more detail and provides 
additional context, describing the tools and evolving methods that system planners use to make 
informed decisions to address uncertainty.   

In the section Industry Practices and Emerging Methods to Address Uncertainty, we also examine 
the deterministic and probabilistic methods that can supplement or be incorporated into these 
frameworks to more effectively capture a greater range of outcomes and uncertainty. In addition to 
examining methods to address key sources of uncertainty within an individual modeling framework, 
this assessment also identifies ways in which advanced analytical techniques can enhance the 
coordination between modeling frameworks. We discuss these applications in greater detail in 
Enhanced Linkages Between Power Flow and Production Cost Models. 
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Power Flow 

Power Flow “cases” typically are an examination of a specific snapshot in time, at the hourly 
granularity, of electric flows across the system respecting the physics of AC power flows (i.e. 
including active and reactive power flow balances). These studies simulate specific grid conditions 
to determine if power flows on transmission lines or voltages at nodes and substations meet specific 
reliability standards. The models are used to perform contingency analysis, voltage stability, short 
circuit analysis, and assess optimal power flow characteristics.   

AC Power Flow models are a complex system of mixed linear and non-linear (trigonometric) 
equations which represent the phase angles and voltage magnitudes used to calculate active and 
reactive power flows through transmission systems. The analyses provide planners with a detailed, 
granular assessment of relevant reliability metrics; however, a key constraint of Power Flow 
modeling is computational complexity. The substantial number of components within power 
systems that interact with each other, and the iterative techniques needed to solve convergence on 
the system limit most Power Flow models to a system representation during a singular moment in 
time. To minimize the inherent limitations due to computational requirements, “snapshots” are 
evaluated to capture a range of possible “high stress” system conditions such as periods of summer 
or winter peak demand.   

A task frequently faced by planners is how to efficiently choose the most appropriate period to 
evaluate within a Power Flow model that best represents high-stress conditions on the system. The 
higher volumes of weather-dependent generation, as well as increases in the frequency and intensity 
of extreme weather events, are challenging the conventional approach of assessing winter or 
summer peaks. There have been a variety of efforts to solve this problem, which we discuss in greater 
detail in the Coordination Between Modeling Frameworks subsection and in the emerging 
methods evaluated in the accompanying research materials.  

Production Cost 

Production Cost models are typically software-based tools that can perform unit commitment and 
security-constrained economic dispatch while optimizing system operational (production) costs 
over a given timeframe — typically simulating hourly operations over an entire year. These models 
are often used to evaluate market congestion, assess bulk system impacts under broad federal or 
state policy changes, or measure the economic benefits of potential transmission upgrade options. 
Underpinning these models is a simplified representation of the transmission network using DC 
power flows, which is informed by the system topology developed in the (AC) Power Flow modeling. 
This simplified representation of DC-optimized power flows results in much lower computational 
requirements than that of the AC Power Flow models, which allows for a chronological (8,760-hour) 
evaluation of the bulk system across many years. The tradeoff of the simplified DC-optimized 
topology is a less granular representation of the power flows on the system and, as a result, 
Production Cost models are used primarily to conduct economic studies, while Power Flow models 
are used to evaluate transmission system reliability. 

System planners often use scenario analysis within Production Cost models to capture a wide range 
of economic and policy uncertainty. For example, planners may examine multiple future scenarios 
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to evaluate the impacts of fuel price forecasts on system dispatch and resulting congestion. 
Scenario analysis can also be used to assess broader system changes, such as different load 
forecasts or changes in future resource portfolios.  

Production Cost models can evaluate a range of economic metrics, including total system operating 
costs and  congestion on the transmission network. These modelscan be used to identify how the 
operations of a given portfolio change under different economic conditions, or can be used to 
explore potential cost savings from alleviating transmission constraints through new or upgraded 
infrastructure, among other use cases. As previously mentioned in the Power Flow subsection, 
snapshots from the Production Cost modeling may also be used to identify periods of high 
congestion, which can be further evaluated from a transmission reliability perspective within the 
Power Flow modeling framework. 

Capacity Expansion 

The extended lead times of transmission investments are also increasingly requiring system 
planners to conduct long-term analyses which account for projected changes in loads and 
generation portfolios over time. Planned and announced additions and retirements, as well as 
generation interconnection queues, are used to provide initial information about the new generation 
resources added within the system. However, an interconnection queue typically only includes 
resources that may be added in the near-term, such as the next 5 years. To evaluate plausible 
generator expansion plans over a longer time horizon (e.g. 10–30 years), system planners use 
Capacity Expansion models to identify least-cost portfolios of generation resources that meet key 
system constraints, such as planning reserve margin targets under increasing load and regulatory 
requirements, including renewable portfolio standards and decarbonization targets.  

Because of the lengthy time horizon evaluated in Capacity Expansion models, these models often 
simplify the level of operational complexity —by only including transmission constraints at the zonal 
level, and/or only simulating operations and dispatch over a representative sample of days.  

Key Sources of Uncertainty in Transmission Planning 

There are numerous uncertainties facing the electricity industry today. For the purposes of this 
examination, we have categorized the following major sources of uncertainty relevant to 
transmission planning: Outage and Contingency Risk, Weather-Related Variability, and Future 
Uncertainty.  

Outage and Contingency Risk 

Outage-related uncertainty is one of the most critical challenges facing modern grids. Planners are 
increasingly trying to address the risks of simultaneous correlated outages and extended outage 
durations, which can significantly impact reliability. 

Moreover, the growing integration of distributed energy resources (DERs) and the use of more 
advanced fault monitoring and control devices add additional layers of uncertainty. While these 
technologies help improve the speed and precision of outage responses, they also introduce new 
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risks related to coordination and control across distributed systems. As a result, traditional 
approaches to managing outages must be expanded to consider these new variables. 

Probabilistic methods can be used to assess outage risks by considering both the probability and 
severity of events, providing a more comprehensive picture of the grid's vulnerability. Unlike 
deterministic frameworks, which focus on the impacts of a fixed number of failures (e.g. N-1, N-1-1, 
etc.), probabilistic methods can help planners prioritize system upgrades and interventions based 
on identified risks across a wider range of potential contingencies.  

Weather-Related Variability 

The transition to a cleaner energy system is driving a growing reliance on variable renewable energy 
resources, such as wind and solar. Additionally, growing investments in electrification of building 
end uses like space heating is also leading to higher weather sensitivity on the demand side. As a 
result, this rapidly evolving system is becoming more influenced by fluctuations in weather 
conditions.  

Planners are seeing an increased frequency of conditions that pose both operational challenges and 
reliability risks. In addition to traditional weather events that drive peak demand, as the share of 
renewable resources on their systems increase, system planners are facing additional challenges, 
such as coincident evening load peaks coupled with solar roll-off or the unpredictability of cloud 
cover. Weather conditions can cause dramatic fluctuations in renewable generation on sub-hourly 
timescales, and operators are placing increasing value on system flexibility across both generation 
and transmission in order to rapidly respond to changes in supply. In future scenarios with highly 
decarbonized systems, reliability risks can also be influenced by periods of winter weather that 
result in both high levels of heating demand and extended lulls in renewable generation (i.e. 
Dunkelflaute), leading to sustained high net load.  

The increasing frequency and intensity of extreme weather events driven by climate change also 
pose significant challenges for transmission planning. Hurricanes, heatwaves, wildfires, and other 
events can disrupt generation and transmission infrastructure, while also influencing demand 
patterns.  

To effectively accommodate the changing dynamics of the grid, system planners need new tools to 
enhance their assessments of the impact of changing weather conditions on the bulk electric system. 
While deterministic methods are evolving to assess weather variability, they are limited in their 
ability to measure the wide range of weather conditions and their resulting influence on the state of 
the grid. Here, probabilistic methods have the potential to more effectively quantify the variability of 
weather conditions and their potential impacts on electric system reliability and planning. 

Future Uncertainty 

Future uncertainties play a significant role when planning the future of the electricity grid. Costs of 
future technologies and fuels, future policies, economic conditions, and the locations of new 
resource additions all have profound impacts on how to identify the most cost-effective investments 
in electric generation and transmission. Quantifying the value and cost-effectiveness of new 
transmission presents a challenge when these uncertainties cannot be effectively captured in 
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mathematical models or probability distributions — for example, the likelihood of a future federal or 
state policy being enacted is inherently subjective and does not lend itself to a discrete probability 
function. Historically, system planners addressed these ‘non-quantifiable uncertainties’ by utilizing 
different scenarios to assess a wide range of potential futures, and by deterministically varying key 
inputs. 

Figure 1 provides an illustrative overview of key sources of uncertainty and how their magnitude 
increases with duration of the planning horizon. System planners are faced with the problem of 
identifying least-regrets investments for an uncertain and volatile future. Therefore, it is essential to 
evaluate whether current planning frameworks adequately address uncertainties and to determine 
if these frameworks need further enhancements in the face of a changing electric grid.   

 

 

Figure 1: Planning Uncertainties vs Time 

Key Sources of Uncertainty within Modeling Frameworks 

Power Flow, Production Cost, and Capacity Expansion modeling frameworks each address many 
different categories of uncertainty. Table 1 serves as a primer to introduce each source of 
uncertainty, how it can be addressed, and which modeling framework(s) are typically used to 
address this uncertainty. The table represents sources of uncertainty, mapped across models, 
which include categories currently being captured in industry (best practices) as well as future 
applications, with opportunities for further probabilistic or deterministic assessment. 
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Table 1: Key Sources of Uncertainty in Transmission Planning 

Industry Practices and Emerging Methods to Address Uncertainty 

Throughout this work, E3 has characterized existing and emerging methods for characterizing and 
evaluating key sources of uncertainty under three high-level categories: Deterministic, Probabilistic, 
and Hybrid. 

Deterministic Methods 

Deterministic methods have long been the foundation of transmission planning. These approaches 
involve analyzing fixed input scenarios to produce specific outputs, providing a straightforward and 
transparent framework for evaluating system reliability and economic outcomes. Deterministic 
methods excel in identifying system needs under well-defined conditions, making them suitable for 
regulatory compliance and straightforward planning exercises. For example, Capacity Expansion 
models are typically deterministic in nature — using a specific, defined set of inputs, the model will 
always yield the same portfolio. The same can be said for Power Flow models which deterministically 
examine AC transmission flows in great detail, typically for a single hour under a very specific set of 
system conditions. Often, multiple sets of inputs are run through deterministic models to identify 
the “sensitivity” of the modeled outcome to changes in system conditions. Scenario planning for 
future uncertainty is a good example of this approach, where multiple “futures” are examined to 
evaluate portfolios under different economic and policy conditions, the likelihood of which is not 
knowable. 

However, the deterministic approach may fall short in addressing the inherent uncertainty of modern 
power systems. By focusing on a limited set of predefined scenarios, deterministic models can fail 
to capture the full spectrum of possible outcomes, particularly those associated with low-
probability, high-impact events. Furthermore, deterministic methods are ill-equipped to account for 
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the dynamic interdependencies between various factors, such as weather variability (and 
associated load/generation correlation), climate change, and evolving policy landscapes. 

Probabilistic Methods 

Probabilistic planning methods enable transmission planners to systematically account for 
variability and risk, offering a deeper understanding of potential outcomes and their likelihoods. 
Unlike deterministic methods, which rely on fixed inputs to produce consistent and repeatable 
outputs, probabilistic approaches incorporate randomness and variability to assess a range of 
possible scenarios.  

Probabilistic planning represents a paradigm shift in how transmission systems are evaluated and 
designed. Unlike deterministic methods, probabilistic approaches incorporate randomness and 
variability into the modeling process, enabling planners to quantify risks and evaluate a broader 
range of potential outcomes. This capability is particularly valuable for addressing low-probability, 
high-impact events, which can have significant implications for grid reliability and investment 
decisions.  

For example, probabilistic models can simulate thousands of scenarios to assess the likelihood of 
system failures, enabling planners to identify vulnerabilities and prioritize investments accordingly. 
These models also provide insights into the economic and reliability tradeoffs of different planning 
decisions, helping stakeholders make informed choices that balance cost, risk, and performance. 

As previously mentioned, E3 conducted interviews with system planners (ISOs/RTOs and utilities) 
across the country, as well as academics and industry practitioners, to gather feedback about the 
degree to which probabilistic methods have been explored and implemented in planning processes. 
Deterministic methods coupled with scenario planning broadly remain the industry standard for 
addressing uncertainty in transmission planning. The overarching theme from our interviews as well 
as discussions during our symposium indicated that widespread adoption of probabilistic methods 
for transmission planning remains in its infancy; however, there is an appetite for methods that 
better capture uncertainty.   

Many planners have explored some degree of probabilistic applications to increase the robustness 
of their planning processes, yet adoption remains limited in part due to implementation challenges. 
Common barriers limiting the transition from deterministic to probabilistic approaches include: data 
and computational requirements, staffing limitations and time constraints, the length of current 
planning processes, stakeholder acceptance, and the lack of commercially available tools. Despite 
these initial challenges, a hybrid approach emerged as a widely suggested possible first step to 
implementation — shaping model inputs using probabilistic methods may enhance existing 
deterministic frameworks. 

It is clear that the transition to adopting probabilistic methods will be a gradual one and will require 
a balanced approach to ensure that the additional insights and benefits offered by such methods 
outweigh the incremental level of effort and associated implementation “costs”. 
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Hybrid Methods 

We have also defined a category of “Hybrid” methods, which include both deterministic and 
probabilistic elements. For example, many hybrid approaches rely on probabilistic or statistical 
methods to pre- or post-process the outputs of a deterministic model.  By doing so, system planners 
may gain additional insights about the uncertainty they’re evaluating, which would otherwise not be 
possible using only deterministic methods. Hybrid approaches allow a bridge to some of the benefits 
of full probabilistic methods while mitigating key implementation challenges, including high 
computational requirements, extended planning cycle times, stakeholder and regulatory 
acceptance, and the lack of commercially available tools. Hybrid methods may also rely on machine 
learning or other methods to “predict” the likelihood of events based on training on correlations 
within datasets, even if those relationships are not causal. An example of a hybrid approach may 
include performing a regression analysis to identify correlations between weather, renewable 
generation, and loads to better identify sets of conditions to examine in a Power Flow model run.   

Coordination Between Modeling Frameworks 

In practice, transmission planning models are often siloed, where data and results from one model 
are not coordinated with other modeling efforts of the same system. Through our research and 
interviews, we found industry participants who have taken initial steps toward linking tools; however, 
the degree of coordination varies significantly across systems and planning processes. One example 
of such a linkage is examining system dispatch over all hours of the year in a Production Cost model 
and using those outputs to identify the “snapshots” that warrant further examination of transmission 
system reliability in a Power Flow model.   

The Production Cost model leverages a simplified representation of the transmission system (DC 
Power Flow) which was informed by the system topology developed in the AC Power Flow model. 
This simplified representation allows planners to evaluate many more hours than in a Power Flow 
model to identify periods that represent challenging system conditions. Once identified, these 
snapshot hours can be re-evaluated in detail in the Power Flow model to assess system reliability. 

This linkage creates a type of feedback-loop between the modeling frameworks, where one process 
informs another, giving planners a more robust toolset for understanding and addressing uncertainty. 
In addition to addressing key sources of uncertainty within individual modeling frameworks, this 
white paper also explores ways in which advanced analytical techniques can enhance the 
coordination between modeling frameworks. The Chronological AC Power Flow Automated 
Generation (C-PAGE) method, using Application Programming Interfaces (APIs) to automate 
communication between tools, and the SERVM/TransCARE linkage demonstration, represent 
examples of opportunities for coordination and enhanced linkages. We describe these examples in 
more detail in the attached Technical Appendix in sections: Linkages Between Modeling Frameworks, 
Study Recommendation (Enhanced Linkages Between Power Flow and Production Cost Models), 
Weather-Related Variability (C-PAGE Method and Case Study), and Outage and Contingency (SERVM 
+ TransCare Linkage Method and Case Study). For precise references, see pages 14, 18, 39-40, and 
43-44. 
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There are also many other opportunities to capture linkages between models that are beyond the 
scope of this work. Key examples include, but are not limited to: 

 Representation of chronological system dispatch within capacity expansion 
 Co-optimized generation and transmission planning  
 Generator placement for future resource portfolios 

It is also important to note that there are inherent tradeoffs with introducing additional complexity to 
capture linkages between modeling frameworks. Balancing these tradeoffs and capturing the most 
critical interactions to ensure a cost-effective and reliable system are the subject of Integrated 
System Planning.3 Integrated system planning (ISP) utilizes a cohesive set of data, processes, and 
models to integrate generation and customer resource planning with transmission and distribution 
system planning. This approach contrasts with traditionally siloed planning processes, and this 
integration can be critical to making the right investments, in the right places and at the right times. 

Reliability Models and Analyses 

As previously mentioned, transmission reliability models evaluate whether the grid can operate 
securely and reliably under a wide range of conditions. They assess the ability of the system to meet 
demand while respecting thermal, voltage, and stability limits of transmission infrastructure. There 
are numerous software packages that simulate specific grid conditions to determine if transmission 
systems meet specific reliability standards — however, detailed assessment of each would be 
beyond the scope of this report. For the purposes of this study and to simplify discussion, we will 
broadly categorize this class of reliability tools as Power Flow models. These Power Flow models 
provide the basis for examining steady state (normal) and dynamic (sudden changes or faults) 
operating conditions. 

Reliability analyses are generally structured around system “snapshots” that represent periods of 
elevated system stress. Typical snapshots may include Summer Peak Load, Winter Peak Load, and 
Spring Loads with High Renewable Outputs, each reflecting credible future system states that 
present different challenges to the transmission network, while providing robust insights into system 
performance and reliability. Through power flow modeling, planners evaluate the ability of the bulk 
power system to generate and deliver electricity reliably across the transmission network while 
meeting demand under a range of stressed operating conditions. Although a snapshot approach has 
historically provided excellent insights into reliability and stability under challenging operating 
conditions, the diversity of system challenges is increasing due to a number of factors, such as 
increased renewable penetration and changes in the magnitude and frequency of extreme weather. 
In the Technical Appendix section: Technical Review – Power Flow Modeling (page 23), we discuss 
several potential methods which provide system planners with additional means to address 

 

3 More discussion exploring the opportunities for Integrated System Planning can be found in E3’s 2024 and 2025 white 
papers Integrated System Planning - Holistic Planning for the Energy Transition, Foundations of Integrated Planning: 
Defining a Framework For Comprehensive Energy System Planning, Integrated Planning Guidebook: A Practical 
Coordination Framework for Electricity Planners 

https://www.ethree.com/wp-content/uploads/2024/10/E3-ISP-Whitepaper.pdf
https://www.esig.energy/wp-content/uploads/2025/06/ESIG-IP-Foundations-Integrated-Planning-report-2025.pdf
https://www.esig.energy/wp-content/uploads/2025/06/ESIG-IP-Foundations-Integrated-Planning-report-2025.pdf
https://www.esig.energy/wp-content/uploads/2025/06/v2-ESIG-IP-Guidebook-report-2025.pdf
https://www.esig.energy/wp-content/uploads/2025/06/v2-ESIG-IP-Guidebook-report-2025.pdf


MProbabilistic Planning Methods:  
A Review of Methods Available to Transmission PlannersProbabilistic Planning Methods:  
A Review of Methods Available to Transmission Planners 

Probabilistic Planning Methods: A Review of Methods Available to Transmission Planners  14 

Executive Summary  Probabilistic Planning Methods 

uncertainty within the Power Flow modeling framework. This research informs our 
recommendations, which can be found in the Overview of Findings section. 

Economic Models and Analyses 

To evaluate the long-term economic and market efficiency performance of the transmission system, 
transmission planners often rely on a class of economic planning tools known as Production Cost 
models. 

The extended planning horizon for transmission development necessitates numerous assumptions 
to account for a wide range of potential future outcomes. These assumptions carry significant 
uncertainty, such as evolving economic conditions and associated load growth, clean energy 
policies, technology adoption, and the future siting and cost of new resources, among others. In the 
Technical Appendix section: Technical Review – Production Cost Modeling (page 41), we discuss 
several potential methods which provide system planners with additional means to address 
uncertainty within the Production Cost modeling framework. We also provide recommendations and 
insights into methods which can provide enhanced linkages between the Power Flow and Production 
Cost frameworks to enable a more dynamic approach to Power Flow modeling in the Technical 
Appendix section: Study Recommendation – Enhanced Linkages Between Power Flow and 
Production Cost Models (page 18). These findings are introduced in the next section, Overview of 
Findings. 

Overview of Findings 

Recommendations 

E3 developed a comprehensive review of existing and emerging probabilistic methods, with a focus 
on their potential to improve current planning processes. Based on our findings, we have outlined 
four key recommendations that can be practically implemented by transmission planning entities in 
the near term. These recommendations aim to enhance ability to address uncertainty and improve 
its capacity to identify projects that deliver the greatest value to the overall system. 

 

 

 

Study Recommendations 

1. Enhance the linkages between Power Flow and Production Cost Models 
2. Pre-process inputs using probabilistic methods to characterize uncertainty 
3. Adopt enhanced methods for assessing the economic cost of uncertainty 
4. Adopt stochastic scenario evaluation and risk assessment 
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1. Enhance the Linkages Between Power Flow and Production Cost Models 

E3 recommends enhancing the linkages between Power Flow and Production Cost frameworks. In 
practice, transmission planning models are often siloed, where data and results from one model are 
not coordinated with other modeling efforts of the same system. E3 believes that improved 
coordination between models can be realized by using Production Cost model outputs in an iterative 
process to inform the inputs and snapshots used in Power Flow models. There are several tools and 
methods available that would allow system planners to use Production Cost models to identify 
periods of high system stress that warrant further examination in detailed Power Flow models.   

We propose an enhancement of existing processes to create formal linkages between the models to 
enable a more dynamic approach to Power Flow modeling and streamline the data processing 
requirements. Linkages can include methods to share data back and forth between the Production 
Cost and Power Flow models by leveraging Application Programming Interfaces (APIs) or custom 
integration tools developed using Python (or other languages). Additionally, some embedded 
production cost and power flow models exist that can automate portions of this coordination, such 
as encoord’s SAInt.4 

Reduced computational requirements of Production Cost models relative to Power Flow models can 
provide improved snapshot identification by evaluating system conditions at an hourly granularity 
across many years. In most cases, current Production Cost modeling frameworks use a single 
weather year; however, it is relatively easy to extend this framework by leveraging time series of 
temporally coincident weather data.5 Many years of weather, load, generation, and outages can be 
evaluated at the hourly level providing system planners with a wide range of system operating 
conditions that warrant further exploration. Further, most production cost models have the 
capability to incorporate Monte Carlo or other probabilistic approaches to randomly select weather 
and outage and contingency patterns. Through coordination, millions of potential system states can 
be created for further evaluation with significantly reduced user intervention. This approach allows 
planners to identify and zoom into challenging periods in Production Cost and run those 
probabilistically across several hours using Power Flow. 

Test cases have been successful on several systems, including NYISO, ISO-NE and TVA; however, 
some degree of manual intervention is typically required when the model has difficulty solving. Case 
studies and methods implementing these linkages can be found in the Technical Appendix in 
sections: Study Recommendation (Enhanced Linkages Between Power Flow and Production Cost 
Models), Weather Related Variability (C-PAGE Method and Case Study) and Outage and Contingency 
(SERVM + TransCare Linkage Method and Case Study).  For precise references, see pages 18, 39-40 
and 43-44. 

 

 

 

4 https://www.encoord.com/resources/blog/saint-3.5 
5 ESIG - Weather Dataset Needs for Planning and Analyzing Modern Power Systems 

https://www.encoord.com/resources/blog/saint-3.5
https://www.esig.energy/wp-content/uploads/2023/10/ESIG-Weather-Datasets-full-report-2023b.pdf
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2. Pre-Process Inputs Using Probabilistic Methods to Characterize Uncertainty 

As previously discussed, factors that are limiting the transition from deterministic to probabilistic 
approaches include computational requirements, planning cycle time constraints, stakeholder or 
regulator acceptance, or lack of commercially available tools. Our research, interviews, and panel 
discussions also revealed a common theme: due to these challenges, the transition to fully adopting 
probabilistic methods is likely to be gradual. As an intermediate step, E3 suggests using probabilistic 
methods to shape modeling inputs to capture a more comprehensive representation of 
uncertainties.   

Robust data-driven processes can help system planners to capture the range of uncertainty in input 
variables within Power Flow modeling.  For example, historical data can be leveraged to determine 
variable renewable energy dispatch levels that represent credible system conditions, which are then 
studied to ensure reliable system performance.  These conditions span a wide range of operating 
states—including light load, summer and winter peaks—and help identify scenarios that are both 
plausible and stressful to the system.  E3 considers these approaches to be robust, as they 
effectively capture a substantial range of uncertainty, enhance the down-selection process, and 
strengthen the overall planning process.  While this represents only one of several methods to 
incorporate uncertainty through pre-processing, system planning methods may benefit from similar 
practices for other inputs. 

A wide range of statistical methods are available to quantify the variability of load, outages, and 
generation in response uncertainty such as weather conditions or component failure rates. This 
offers system planners the flexibility to choose methods that balance their needs to accurately 
capture uncertainty with practical constraints, such as staffing or complexity. A subset of 
probabilistic methods which can be used to pre-process inputs are described below; however, 
stochastic applications are vast, and therefore this list is not exhaustive.   

 Stratified Sampling is a method used by EPRI which extends Monte Carlo simulation by 
dividing time-series system load and renewable output into sub-populations—to generate 
dispatch scenarios that capture both average system conditions and low-probability, high-
impact events. The approach ensures that scenarios with a low probability of occurrence 
will not get lost in the “average” scenarios, which occur more frequently on the system. 

 Slicing and Latin-Hypercube Sampling is an approach which uses an intelligent sampling 
method to find a small number of hourly cases representative of a full calendar year to 
account for seasonal and diurnal variability of renewable generation. This method uses 
joint cumulative distribution functions to down-sample to reduce the problem size and 
derive the appropriate scenarios, which are representative of variability in the specified 
input variable (generation, load, etc.) across an entire year. 

 K-Means Clustering is a machine learning algorithm used to classify data points into 
clusters based on their similarities. This algorithm is well suited to applications in weather 
pattern analysis (heatwaves, cold, high/low wind), extreme event detection (storms), 
categorizing renewable generation patterns (diurnal solar cycles, seasonal wind 
generation), and as a pre-processing data classification step in forecasting. 
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In addition to these methods, which warrant further exploration, machine learning (ML) applications 
offer potential value, such as applying AI-based predictive capabilities to assess outages and 
extreme weather scenarios, as well as supporting down-selection processes to identify the most 
relevant scenarios for Production Cost modeling. Although use cases for machine learning and the 
predictive capabilities of AI are nascent within transmission planning, E3 believes the fast-growing 
capabilities in this space may have many applications for transmission planning in the future, some 
of which are characterized in the Technical Appendix.  For more detail, see sections:  Study 
Recommendation – Pre-Processing Using Probabilistic Methods (k-Means Clustering), Weather 
Related Variability – Statistical Weather Prediction (Numerical Weather Prediction and Global 
Climate Change Models) and Weather Related Variability – C-Page (Intelligent Sampling Method). 
For precise references, see pages 19, 36 and 39. 

3. Adopt Enhanced Methods for Assessing the Economic Cost of Uncertainty 

E3 recommends the adoption of metrics and methods which weigh the societal cost of “unreliability” 
or interruption against the incremental cost of investment. This approach uses methods that 
evaluate the tradeoff between incremental investment cost of transmission (to achieve a higher 
degree of reliability) to the cost of interruption. These methods quantify the impacts of transmission 
projects using probabilistic (or well defined deterministic) reliability assessments and interruption 
cost metrics such as Value of Lost Load (VOLL) or Expected Energy Not Served (EENS).   

Economic Cost of Uncertainty is effective in identifying which projects provide the greatest reliability 
enhancement across a portfolio of potential alternatives, while incorporating a wide range of 
uncertainties such as weather impacts and outage risk. Comparability across many investment 
alternatives, while understanding the range of possible outcomes, is a key feature of this approach.  
Metrics such as Reliability Indices or Benefit/Cost ratios provide quantitative measures for assessing 
the economic benefit attributed to a higher degree of reliability. These indices are typically 
represented as a function of capital cost and provide system planners with specific, repeatable 
calculations that enable comparison across multiple scenarios. 

When using this approach, it’s important for planners to ensure that economic criteria and 
thresholds are well defined to ensure the appropriate benefits and risks are captured. For example, 
diversity of geography may present challenges when applying a single unitized value for VOLL or 
EENS.  Planners must consider the values attributed to each region—the societal cost of interruption 
may be much higher in areas with critical loads (hospitals, communication infrastructure, industrial 
processes, etc.), compared to the cost of interruption in other settings. Additionally, when using this 
framework, care must be taken to explore tradeoffs in outcomes. We recommend that planners look 
at specific consequences and impacts of events, as there will be areas that need to meet a higher 
level of performance because the system can’t withstand the consequences. Additionally, when 
assessing societal cost, tail or downside risk will also require further consideration. As an example, 
which scenario is worse for the system: a single $100bn event or 100 individual $1bn events? The 
expected value may be the same, but they each carry different considerations. 

 We explore these methods and considerations in three case studies in more detail in the Technical 
Appendix in sections: Outage and Contingency Risk (GARPUR Norway Long-Term Case Study), 
Economic Cost of Unreliability (ERCOT PRA Framework Case Study), and Economic Cost of 
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Unreliability (BC Hydro Vancouver Island Reinforcement Case Study).  For precise references, see 
pages 32, 47 and 48. 

4. Adopt Stochastic Scenario Evaluation and Risk Assessment 

Our research revealed another common theme across all interviewed industry participants that 
suggested scenario analysis will remain the foundational tool for addressing long-term uncertainty. 
This approach primarily relies on deterministic methods which are evaluated across multiple, 
discrete scenarios.  Industry practice involves modeling or evaluating boundary conditions, allowing 
planners to assume that all potential outcomes within these limits are accounted for. While this 
demonstrates the effectiveness of scenario planning, there are opportunities to improve the process 
by helping planners more efficiently identify credible base and edge cases. Evaluating additional 
scenarios helps planners build confidence when similar outcomes are observed. However, several 
industry stakeholders indicated that it may become difficult to justify the workforce, time, and 
processes needed for full utilization or exploration. Based on this feedback, E3 recommends 
enhancing, rather than replacing, existing processes using stochastic evaluation methods and/or 
out-of-model risk assessments.    

Methods that improve scenario selection, increase comparability across scenarios, and incorporate 
thresholds to trigger scenario re-evaluations offer valuable opportunities to enhance planning 
approaches. We recommend three methods, which can improve scenario planning processes while 
retaining most of the current planning frameworks. 

 Down-Selection of Scenarios: Several methods can help system planners identify 
credible edge cases, which ensures that the most appropriate range of uncertainty is 
captured without the computational and staffing demands required to run every scenario. 
These methods leverage statistical or probabilistic approaches to describe the range of 
uncertainty across key input variables, to help system planners understand boundaries and 
select an optimized portfolio of scenarios. 

 Stochastic Portfolio Risk Evaluation: This is a method that requires limited effort and 
model and data requirements, yet it can improve the robustness of portfolio planning. This 
class of methods accounts for uncertainty by considering a range of possible futures and 
their associated probability of occurring, as opposed to a single scenario. The approach is 
unique because it can quantify the distributions of total system costs for each future and 
assign conditional probabilities to each future to determine the likelihood of each 
combination of outcomes. Results interpretation and visualization (such as the range of 
impact across scenarios for each input variable) is a key step to inform decision-making 
that is often underperformed.   

 Out-of-Model Risk Assessment: This method is used to improve long-term planning 
practices and outcomes through vulnerability assessment to identify which uncertainties 
pose the greatest risk. Performance measures (probabilistic, hybrid, or qualitative) are used 
to evaluate the effectiveness of decision options, and a vulnerability assessment is 
performed to identify uncertainties that pose the highest risk. These methods are designed 
to be continuously updated over long time horizons in response to new information and use 
signposts to establish thresholds for monitored variables that trigger re-evaluation. 
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We explore these methods and considerations in three case studies in more detail in the Technical 
Report in sections: Weather Related Variability (C-PAGE method), Future Uncertainty (Stochastic 
Portfolio Risk Evaluation and TVA 2019 IRP Case Study) and Future Uncertainty (Robust and Adaptive 
Planning).  For precise references, see pages 39, 56 and 64. 

Conclusion 

Decarbonization policies, the accelerated integration of renewable energy resources, rising 
electrification demands, and the growing frequency and severity of extreme weather events—
combined with unprecedented large-load interconnection requests and a heightened emphasis on 
system resilience—are fundamentally reshaping the electric grid. These dynamics create significant 
opportunities to transition toward a cleaner, more resilient system. However, they also introduce 
profound challenges for transmission planning, which must increasingly operate under higher levels 
of uncertainty, greater complexity, and evolving reliability requirements.  

In response to these transformative dynamics, transmission planning methodologies must adapt to 
account for a broader range of uncertainties. At the same time, system planners must ensure that 
investment decisions—often characterized by long lead times—reflect a “least-regrets” approach, 
balancing flexibility, cost-effectiveness, and system resilience. This requires the adoption of 
methods which incorporate advanced scenario analysis, probabilistic modeling, and adaptive 
planning frameworks to guide infrastructure development under conditions of persistent uncertainty 
and accelerated change. This whitepaper outlines opportunities for the application of probabilistic 
planning methods that can support transmission planners in addressing these challenges.   

Specifically, we offer four key recommendations for implementation of methods that layer 
probabilistic rigor onto existing processes: 

1. Enhance the linkages between Power Flow and Production Cost Models 
2. Pre-process inputs using probabilistic methods to characterize uncertainty 
3. Adopt enhanced methods for assessing the economic cost of uncertainty 
4. Adopt stochastic scenario evaluation and risk assessment 

One pathway to align planning practices with emerging grid needs—while enhancing transparency, 
comparability, and stakeholder confidence—could take the form of  a phased implementation of 
these recommendations through a hybrid approach that enhances, rather than replaces, existing 
planning frameworks. Additional details regarding these recommendations and other methods 
under exploration are provided in the Technical Report. 
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Technical Report 

The following section of this report details the findings of our research and provides an in-depth 
assessment of categories of uncertainty, modeling frameworks, and existing, emerging, and 
probabilistic methods. In this Report, we provide detailed, actionable recommendations that are 
intended to support system planners by improving the methods used to address uncertainty across 
the Power Flow, Production Cost, and Capacity Expansion frameworks. 
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Acronyms

Acronym Definition
AC Alternating Current
ACEP Adaptive Co-optimized Expansion Planning
APC Adjusted Production Cost
CEM Capacity Expansion Modeling
CLL Composite Load Level
C-PAGE Chronological AC Power Flow Automated Generation
DC Direct Current
DCS Dynamic Contingency Selection
DOE US Department of Energy
EENS Expected Energy Not Served
ELCC Effective Load Carrying Capacity
EPRI Electric Power Research Institute
EUE Expected Unserved Energy
GARPUR Generally Accepted Reliability Principle with Uncertainty Modeling
GCM Global Climate Change Model

ISO/RTO
Independent System Operator / Regional Transmission 
Organization

Acronym Definition

JHSMINE
Johns Hopkins Stochastic Multi-stage Integrated Network 
Expansion

LOLE Loss of Load Expectation
MC Monte Carlo
MCP Measure, Correlate, Predict
ML (Generative) Machine Learning
NERC North American Electric Reliability Corporation

NOAA/NCEP
National Oceanic and Atmospheric Administration / National 
Centers for Environmental Prediction

NWP Numerical Weather Prediction
PCM Production Cost Modeling
PFM Power Flow Modeling
PNNL Pacific Northwest National Laboratory
RMAC Reliability Management Approach and Criterion
VOLL Value of Lost Load
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 MISO engaged E3 to outline the opportunities to employ probabilistic methods to address uncertainty in key 
elements of transmission planning frameworks:

 Significant investments in the transmission system are expected in the coming decades; at the same time, planning 
for uncertainty is increasing in both importance and complexity due to several factors, such as: 
• Increased weather dependence of generation resources, i.e., variable renewables

• Higher demand-side uncertainty as data centers and electrification lead to shifts in the magnitude and timing of demand

• Increases in the frequency and intensity of extreme weather due to climate change

• Varying levels of policy ambition

 E3 conducted a comprehensive review of deterministic and probabilistic methods and their applications in Power 
Flow, Production Cost and Capacity Expansion modelling
• E3 performed an extensive literature review of existing and emerging methods across ISO/RTO planning processes as well as methods in 

use or under exploration in academia and industry, supplemented by interviews with key experts

• E3 and MISO also co-hosted a 2-day symposium with experts and thought leaders across North America, including with ISO/RTO and 
utility planning departments, academic researchers, and other industry practitioners, to discuss methods for addressing uncertainty

 This research has also been summarized in a white paper; the slides herein serve as an appendix to the white paper

Project Overview
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 Over the past several decades, the electricity industry and its transmission systems have experienced 
significant economic, policy, and technological transformations.  More changes are to come but their 
nature and magnitude is highly uncertain  

 States, utilities and organizations are actively pursuing pathways to decarbonize, and maintaining 
system reliability is crucial as dependence on electrification continues to grow

• Considering economic, policy, and technology outcomes over a multi-decade time horizon is becoming increasingly 
important

 System planners already address uncertainty, but the sources of uncertainty and their complexity are 
increasing

• Addressing increased uncertainty across economic and policy changes as well as weather and climate impacts to 
outages, loads and generation are key to maintaining a robust and reliable electric system

 Affordability and least-regrets investments are central to transmission planners and stakeholders

• Planning for uncertainty gives transmission planners crucial information to maintain reliability and resiliency while 
maximizing the economic benefits and minimizing system costs

• Transmission investment occurs over a much longer lead time relative to other assets, so greater uncertainty exists 
during the transmission planning horizon

Why is Planning for Uncertainty Important?
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Economic and Policy Uncertainty

Today 2030 2035 2040 2045 2050 2055 2060 2065+

Magnitude of 
Uncertainty

Long-term power system planning necessitates that planners make decisions under deep uncertainty
This is a challenge exacerbated by the rapid economic, policy, and technological transformations

Shifting 
Resource Mix

Electrification 
Demands

Climate ChangeEconomic 
Growth

Technological 
Capabilities

Regulatory 
Policy

Key Sources 
of Uncertainty

Unforeseen 
Challenges

Extreme 
Weather 
Events

Note: Years are illustrative of increasing uncertainty over 
time, and not indicative of specific planning horizons
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 Deterministic: Deterministic methods are defined as methods in which, for a given set of inputs, the method will always yield the same 
set of outputs; in other words, there is no randomness introduced anywhere in the calculation process

• Example(s): A capacity expansion model is a deterministic model; for a specific set of inputs, the model will always yield the same portfolio. 

• A power flow model deterministically examines transmission flows under key system “snapshots”, to N-1

• Often, multiple sets of inputs are run through deterministic models to identify the “sensitivity” of the modeled outcome to changes in system conditions. 

• Example: MISO examines multiple “Futures” with its capacity expansion model to evaluate the resulting portfolios under different economic and policy 
conditions, the likelihood of which is not knowable. 

 Probabilistic: Probabilistic methods introduce at least one component of randomness into their calculation process; for a given set of 
inputs, the method may or may not yield the same set of outputs

• Example: A loss-of-load probability (resource adequacy) model is a probabilistic model; for a specific portfolio, the model may or may not identify a loss-of-
load event. When run over many simulations, the model can yield a likelihood of a loss-of-load event. 

 Hybrid: Our research identified many methods that rely on probabilistic or statistical methods to pre- or post-process the outputs of a 
deterministic model; we have defined these as “Hybrid” methods throughout the deck

• Example(s): MISO performs a regression analysis on renewable and load correlations to identify sets of conditions to examine in its power flow snapshots

• These methods may also rely on machine learning or other methods to “predict” the likelihood of events based on training on correlations within datasets, 
even if those relationships are not causal

Methods for Characterizing Uncertainty

Throughout this work, E3 categorizes methods for characterizing and evaluating key sources of uncertainty as 
Deterministic, Probabilistic, or Hybrid
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 Power Flow

• System operators develop a series of Power Flow models which contain a detailed representation of the transmission network and are used to perform 
reliability assessments needed to fulfill various NERC and Tariff compliance obligations.  These models also inform topology of production cost models used 
for economic planning studies 

• AC Power Flow modeling is computationally intensive due to the large number of components within power systems that interact with each other, and the 
iterative techniques needed to solve convergence on the system

• To minimize computational requirements, “Snapshot” periods are evaluated which assess “high stress” periods such as summer and winter peak demand; 
Power Flow studies simulate specific grid conditions to determine if power flows on transmission lines or voltages at nodes/buses meet specific reliability 
standards

 Production Cost

• Production Cost models are used for market congestion studies, assessment of bulk system impacts under broad federal or state policy changes, and to 
measure the economic benefits of potential transmission upgrade options

• These models leverage a simplified representation of the transmission network (DC power flow) which is informed by the system topology developed in the 
Power Flow (AC) modeling

• Computational requirements of the DC optimized power flow modeling is much lower than the AC Power Flow models allowing for a chronological (8,760 hour) 
evaluation of the bulk system across many years; snapshots from the Production Cost modeling can be used to identify periods of high congestion which can 
be further evaluated for reliability within the Power Flow modeling framework

 Capacity Expansion

• Capacity Expansion models are used to identify future resource portfolios, and evaluate all possible combinations of both existing and new resources to reach 
an optimal, least-cost plan

• They can be used to examine least-cost portfolios under a range of load forecasts, fuel prices and renewable penetration, among other variables

• Future portfolios can then be assessed in both a Power Flow model to ensure the transmission system can reliably support new generators and in a Production 
Cost model to assess the impacts of new generators on system dispatch and congestion

Modeling Framework Overview
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Key Sources of Uncertainty in Transmission Planning Processes

Modeling Framework

Category of Uncertainty Power Flow Production Cost Capacity Expansion

Outage and Contingency

Generation Outages Outage and contingency assessment is related 
to capacity expansion modelling, but typically 

addressed in Resource Adequacy assessmentsOutage Events & Failure Rates

Weather Related Variability

Peak Demand Weather variability and its impact on load and 
renewable generation is related to capacity 

expansion modelling, but typically addressed 
through ELCCs and Resource Adequacy 

assessments

Renewable Output

Extreme Weather Events

Future Climate Change

Future Uncertainty

Economic and Policy Drivers for Demand

Future Clean Energy/Emissions Policy

Fuel Prices

Locations of Future Resources

Resource Costs

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓
Sources of uncertainty across models include categories currently being captured in industry “best 

practices” as well as future applications with opportunities for probabilistic or deterministic assessment

✓

✓
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 In addition to the literature review, E3 conducted interviews with system planners (ISOs/RTOs and utilities) across the 
country as well as academics and industry practitioners, and jointly hosted a 2-day symposium with MISO to discuss 
these topics

 Deterministic methods coupled with scenario planning broadly remains the industry standard for addressing 
uncertainty in transmission planning; however, many transmission planners see value in adopting probabilistic 
methods to address uncertainty

• The overarching theme from our discussions indicated that widespread adoption of probabilistic methods for transmission planning 
remains in its infancy

• Many ISO/RTOs have explored some degree of probabilistic applications to increase the robustness of their planning processes, however 
adoption to date remains narrowly focused on certain key applications

• Most planners identified refinement of inputs in their models using probabilistic methods as a possible first step in adoption

 Many describe similar challenges to implementation; common themes that are limiting the transition from 
deterministic to probabilistic approaches include:

• Data, computational and infrastructure requirements
• Workforce limitations and time constraints 
• Existing lengthy planning processes leave little room for additional analysis
• Stakeholder and regulator acceptance
• Lack of commercially available tools (many tools are research based or custom developed)
• Internal advocacy for adoption of new methods is limited and would be required for any major shift

Industry Practice in Planning for Uncertainty
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 In addition to examining methods to address key sources of uncertainty within an individual modeling framework, this assessment 
also identifies ways in which advanced analytical techniques can enhance the coordination between modeling frameworks

 For example, a production cost model examines system dispatch over all hours of the year; the outputs of a production cost model 
may be used in an iterative process to identify the “snapshots” that warrant further examination of transmission system reliability in a 
power flow model (e.g., C-PAGE method documented in Chronological AC Power Flow Automated Generation)

 There are many other opportunities to capture linkages between models that are beyond the scope of this work; key examples include 
but are not limited to: 

• Representation of chronological system dispatch within capacity expansion | While production cost models capture chronological system dispatch over an 
entire year, many capacity expansion modeling frameworks examine system dispatch over representative or “sample” days intended to capture different 
seasonal conditions over the course of a year. By doing so, the investment decisions in a capacity expansion model are better able to capture operational 
considerations such as ensuring sufficient flexibility exists to integrate variable renewable energy. 

• Co-optimized generation and transmission planning | Information from nodal production cost modeling and/or power flow models can be used to identify key 
transmission constraints that may impact the selection and placement of generation; capacity expansion frameworks can incorporate the costs of transmission 
upgrades such that generation and transmission investments are co-optimized.

• Generator placement for future resource portfolios | Capacity expansion modeling is typically conducted at a zonal or regional level; these resource 
portfolios need to be mapped to specific locations on the transmission system when performing power flow modeling or nodal production cost modeling. 
Information about the Interconnection Queue, headroom on transmission elements, siting and permitting constraints, and other factors can be used to 
“intelligently” site generators at specific locations.

 There are inherent tradeoffs with integrating additional complexity to capture linkages between modeling frameworks; balancing 
these tradeoffs and capturing the most critical interactions to ensure a cost-effective and reliable system are the subject of Integrated 
System Planning

Linkages between Modeling Frameworks

For more discussion of opportunities for Integrated System Planning, see E3’s 2024 white paper: 
Integrated System Planning: Holistic Planning for the Energy Transition

https://www.ethree.com/wp-content/uploads/2024/10/E3-ISP-Whitepaper.pdf


Study Recommendations
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High Value Applications of Probabilistic Methods:

1. Enhance the Linkages Between Power Flow and Production Cost Models

• Reduce manual intervention and/or computational intensity required to iterate between Production Cost and Power Flow analyses

• Improve methods used to identify the hours that represent challenging conditions for transmission system reliability and grid stability

• Develop an enhanced modeling approach where a smaller subset of snapshots, representative of challenging system conditions, are identified in the DC PCM run and further evaluated in a full 
AC power flow model run

2. Pre-Process Inputs Using Probabilistic Methods to Characterize Uncertainty

• The transition to full adoption of probabilistic methods will likely be a gradual one, so an intermediate step in adoption would be to use probabilistic methods to shape modeling inputs to capture 
a greater range of uncertainty

• A wide range of statistical methods are available to quantify the variability of load, outages and generation in response to weather conditions.  Weather year and temperature data is correlated 
and used across all weather-dependent technology and load models

• Sampling techniques may also be leveraged to allow system planners to develop “average” system conditions as well as low probability, high impact conditions 

3. Adopt Enhanced Methods for Assessing the Economic Cost of Uncertainty

• Implement methods that evaluate the tradeoff between incremental investment cost of transmission (for a higher degree of reliability) and the societal cost of interruption

• Assess societal costs for transmission projects using a Probabilistic Reliability Assessment (PRA) and interruption cost metrics such as VOLL

• Metrics such as reliability indices (change in EUE divided by capital cost) or Benefit/Cost ratios provide quantitative calculations for assessing the economic benefit from reduced losses and/or 
unserved energy

4. Adopt Stochastic Scenario Evaluation and Risk Assessment

• This class of methods accounts for uncertainty by considering a range of possible futures and their associated probability of occurring, as opposed to a single Scenario.  

• Can be used to quantify the distributions of total system costs for each future, or conditional probabilities can be assigned to each future to determine of the likelihood of each combination of 
outcomes

• Additionally, out of model risk management methodologies can be used to improve long-term planning practices and outcomes. Performance measures (probabilistic, hybrid or qualitative) are 
used to evaluate the effectiveness of decision options, and a vulnerability assessment is performed to identify uncertainties that pose the highest risk. These methods are designed to be 
continuously updated over long-time horizons in response to new information and uses signposts to establish thresholds for monitored variables that trigger re-evaluation.

Study Recommendations
Methods to Address Uncertainty in Planning Processes
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Applicability of Recommendations

Modeling Framework

Category of Uncertainty Power Flow Production Cost Capacity Expansion

Outage and Contingency

Generation Outages Outage and contingency assessment is related 
to capacity expansion modelling, but typically 

addressed in Resource Adequacy assessmentsOutage Events & Failure Rates

Weather Related Variability

Peak Demand Weather variability and its impact on load and 
renewable generation is related to capacity 

expansion modelling, but typically addressed 
through ELCCs and Resource Adequacy 

assessments

Renewable Output

Extreme Weather Events

Future Climate Change

Future Uncertainty

Economic and Policy Drivers for Demand

Future Clean Energy/Emissions Policy

Fuel Prices

Locations of Future Resources

Resource Costs

Sources of uncertainty across models include categories currently being captured in industry “best 
practices” as well as future applications with opportunities for probabilistic or deterministic assessment

Enhanced Linkages between Modelling Frameworks
Economic Cost of Uncertainty
Pre-Processing Using Statistical Methods
Stochastic Scenario Evaluation

Legend
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 The approach links transmission reliability assessments with production cost (PCM) studies, enabling planners to identify high-stress operating periods from 
PCM results and develop power flow cases that reflect those operating conditions.  The goal is to improve the robustness of the down selecting process for 
creating power flow cases that are representative of stressed operating conditions 
• In practice, transmission planning is still multi-step and not coordinated across frameworks.  Improved coordination can be realized using production cost model outputs in an 

iterative process, to identify the “snapshots” that warrant further examination in a power flow model.

• Test cases have been successful on small systems including NYISO, ISO-NE and TVA; however, some degree of manual intervention was typically required when the model has 
difficulty solving

 Reduced computational requirements of production cost relative to power flow can provide several benefits for snapshot identification:
• Evaluation of system conditions at an hourly granularity across many years

• Most production cost models have the capability to incorporate Monte Carlo or other probabilistic approaches to randomly selecting weather and outage & contingency patterns

• Millions of potential system states can be created for further evaluation with reduced user intervention

• Planners may identify and zoom into challenging periods in production post and run those probabilistically across several hours using Power Flow

 Creating linkages between the models enables a more dynamic approach to power flow modeling, and streamlines the data processing

•  Linkages can include automated methods to hand data back and forth between the PCM and PFM using Application Programming Interfaces (APIs), custom 
automation tools using Python (or other languages) and modification of PFM input files.  Some embedded PCM/PFM models also exist such as encoord’s SAInt.

 Examples of case studies and methods implementing these linkages include: 
• Electric Power Research Institute TVA SERVM + TransCARE Linkage Study: Assessed generation adequacy and transmission component failures using Monte Carlo simulations.  

Users were able to test any number of snapshots based on user-defined criteria and considered a wide range of weather and loads

• Department of Energy PLEXOS-TARA Coupling to assess impacts of grid enhancing technologies (GETs). The linkage allowed PLEXOS to monitor as many high-voltage 
transmission flowgates as possible while allowing TARA to fill in the gaps at lower voltages in the study area. Round-trip modeling was necessary because the new flowgates 
identified will shift the dispatch in PLEXOS and potentially reveal new important flowgates

• PNNL’s C-PAGE Tool is used to convert system dispatch from a production cost model into time-sequenced power flow runs.  Allows for the convergence of production cost 
models with power flow cases to improve power flow modeling practices.  Can significantly reduce runtime and allow system planners to assess the solutions of thousands of 
chronological power flow cases

Study Recommendation
Enhance the Linkages Between Power Flow and Production Cost Models

E3 recommends enhancing linkages between Power Flow and Production Cost frameworks

https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_65602.pdf
https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_65602.pdf
https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_65602.pdf
https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_65602.pdf
https://www.energy.gov/sites/default/files/2024-10/NationalTransmissionPlanningStudy-Chapter4.pdf
https://www.energy.gov/sites/default/files/2024-10/NationalTransmissionPlanningStudy-Chapter4.pdf
https://www.energy.gov/sites/default/files/2024-10/NationalTransmissionPlanningStudy-Chapter4.pdf
https://www.energy.gov/sites/default/files/2024-10/NationalTransmissionPlanningStudy-Chapter4.pdf
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Study Recommendation
Pre-Process Inputs Using Probabilistic Methods to Characterize Uncertainty

 The transition to full adoption of probabilistic methods will likely be a gradual one, so an intermediate step in adoption would be to use 
probabilistic methods to shape modeling inputs to capture a greater range of uncertainty
• A wide range of statistical methods are available to quantify the variability of load, outages and generation in response to weather conditions.  Weather year and temperature data is correlated 

and used across all weather-dependent technology and load models

 Examples of case studies and methods used to pre-process inputs using probabilistic methods include: 
• Stratified Sampling is an approach to probabilistically develop dispatch scenarios which capture uncertainty in weather-correlated renewable generation output and economic load growth, 

as well as generation & transmission component performance.  The input data was divided into sub-populations or “strata” which were assumed to be homogeneous (i.e., similar system 
conditions). Multiple strata ensured that scenarios which have a low probability of occurrence won’t get lost in the “average” scenarios which occur more frequently on the system.  Monte 
Carlo sampling was then used to define the number of dispatch scenarios in each strata.  This approach allowed system planners to capture average scenarios as well as low probability, high 
impact scenarios.

• Slicing and Latin-Hypercube Sampling is an approach uses an intelligent sampling method to find a small number of hourly cases representative of a full calendar year to account for 
seasonal and diurnal variability of renewable generation.  This method uses a joint cumulative distribution functions to down sample to reduce the problem size and derive the appropriate 
scenarios which are representative of variability in the specified input variable (generation, load, etc.) across an entire year.  This approach was used in used in by PNNL the C-PAGE case study 
to reduce the problem size of the power flow scenarios and ensure that the appropriate level of variability was captured. Stratified Sampling is an extension/application of Latin-Hypercube 
Sampling.

• K-Means Clustering is a machine learning algorithm used to classify data points into k clusters based on their similarities. The algorithm iteratively assigns data points to the nearest cluster 
center, using a mathematical distance measure, with the objective of minimizing the sum of distances between data points and the assigned cluster. This algorithm is well suited to 
applications in weather pattern analysis (heatwaves, cold, high/low wind), extreme event detection (storms), categorizing renewable generation patterns (diurnal solar cycles, seasonal wind 
generation) and as a pre-processing data classification step in forecasting. The ERCOT PRA case study used Monte Carlo sampling with K-means clustering, selecting eight clusters using the 
Elbow method (indicates ideal number of clusters). 

• Stochastic Load and Renewable Generation refers to a wide range of methods used to quantify the variability of load and resource production in response to weather conditions. 
Approaches use fundamental statistics-based correlation methods such as regressions or moving averages, however Monte Carlo is the most common and well-established.  Historical data 
is used to develop generation or load profiles as a function of probability of occurrence and can also be used to quantify expected generation during expected events or over a long-term 
average.  

E3 recommends pre-processing inputs using probabilistic methods to characterize uncertainty

https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..
https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..
https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..
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Study Recommendation
Adopt Enhanced Methods for Assessing the Economic Cost of Uncertainty

 The approach uses methods that evaluate the tradeoff between incremental investment cost of transmission (for a higher degree of reliability) and the cost of 
interruption
• Additional metrics such as reliability indices (Δ EUE / capital cost) or Benefit/Cost ratios provide quantitative calculations for assessing the economic benefit from reduced losses and/or unserved 

energy.  These methods assess societal costs for transmission projects using probabilistic (or well defined deterministic) reliability assessment and interruption cost metrics such as Value of Lost 
Load (VOLL), Expected Energy Not Served (EENS), among others.

• These additional methods capture a greater range of uncertainty and assign specific, and measurable economic criteria which can be directly compared to the cost of alternative investments

 Economic criteria and thresholds must be well defined to ensure the appropriate benefits and risks are captured
• Diversity of geography may present challenges when defining a single unitized value for VOLL or EENS.  Planners must consider the values attributed to each region – example, a higher value in areas 

with critical loads 

• Expected value vs. tail or downside risk is also worth considering.  As an example, what scenario is worse for the system? 1x $100bn event or 100 x $1bn events?  Expected value may be the same, but 
the impacts and risks may differ

• Planners should look at specific consequences and impacts of events – there will be areas that need to meet a higher level of performance because the system can’t withstand the consequences

 Examples of case studies and methods implementing the Economic Cost of Uncertainty: 
• GARPUR RMAC Norway study compared two transmission alternatives in Southwest Norway.  Assessed societal costs (using energy not served) for each alternative using probabilistic reliability 

assessment and interruption cost metrics.  Higher security of supply did not defend higher investment costs.  The lower cost alternative reduced investment costs by 25% (€110mm), while expected 
interruption costs increased by €5mm. Strict compliance in N-1 resulted in earlier investments in infrastructure, and probabilistic methods indicated investment could be deferred .

• ERCOT Probabilistic Reliability Assessment (PRA) case study evaluated three fictional transmission investments using both production cost and power flow analysis.  Conducted an 8,760-hour 
production cost simulation using 4 weather patterns to generate >35k scenarios.  8 clusters were selected (8 base cases) and reliability assessments in power flow were performed for 342 extreme 
events.  A reliability index was calculated to enable comparison across scenarios measured change in Expected Unserved Energy as a function of capital cost.  The study was effective in identifying 
which project provided the greatest reliability enhancement per million dollars invested, while incorporating weather uncertainty.

• BC Hydro Vancouver Island Transmission Reinforcement. Study objective was to measure the reliability improvement and transmission loss reduction of several investment alternatives. EENS 
and peak transmission losses were calculated for hourly for a 10-year period, and unitized interruption and transmission loss costs were assigned.  Estimated project cost for each alternative was 
compared to the incremental economic improvement EENS and losses to select the best alternative.

E3 recommends adoption of metrics and methods which balance the Value of Lost Load (VOLL) against the incremental 
cost of investment
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 Scenario planning broadly remains the industry standard for addressing long-term uncertainty in transmission planning  
• E3 received consistent feedback across all interviewed industry participants that suggested scenario analysis will remain the foundational tool for addressing long-term uncertainty. 

• Industry practice involves modeling or evaluating boundary conditions, allowing planners to assume that all potential outcomes within these limits are accounted for. While this demonstrates the effectiveness of 
scenario planning, there are opportunities to improve the process by helping planners more efficiently identify their 'Base Case' and credible ‘Edge Cases’.

• Evaluating additional scenarios helps planners build confidence when similar outcomes are observed. However, it becomes difficult to justify the manpower, time, and processes needed for full utilization or 
exploration. All interviewed jurisdictions highlighted the challenges related to the computational demands and the time required from planning teams to run each scenario.

 E3 recommends enhancing, rather than replacing existing processes using stochastic evaluation methods and/or out-of-model risk assessments. Methods to improve 
scenario selection, increase comparability across scenarios, as well as the adoption of thresholds to trigger the re-evaluation scenarios all represent opportunities to 
enhance planning approaches.  
• Down Selection of Scenarios. Several methods exist to help system planners identify credible edge cases which ensures that the most appropriate range of uncertainty is captured without 

the computational and staffing demands required for running every scenario.  These methods leverage statistical or probabilistic approaches to describing the range of uncertainty across key 
input variables to help system planners understand boundaries and select an optimized portfolio of scenarios.

• Stochastic Portfolio Risk Evaluation  is considered a widely accessible method that requires limited effort, model and data requirements, yet it can substantially improve the robustness of 
portfolio planning.  This class of methods accounts for uncertainty by considering a range of possible futures and their associated probability of occurring, as opposed to a single Scenario.  The 
approach is unique because it can be used to quantify the distributions of total system costs for each future or conditional probabilities can be assigned to each future to determine the 
likelihood of each combination of outcomes. Results interpretation and visualization (such as the range of impact across scenarios for each input variable) is a key step to inform decision-
making that is often under-performed.  The 2019 TVA IRP offers an example of a visualization that clearly shows the impact of each input variable across scenarios.

• Out-of-Model Risk Assessment can be used to improve long-term planning practices and outcomes through vulnerability assessment to identify which uncertainties pose the greatest risk.  
Performance measures (probabilistic, hybrid or qualitative) are used evaluate the effectiveness of decision options and a vulnerability assessment is performed to identify uncertainties that 
pose the highest risk. These methods are designed to be continuously updated over long-time horizons in response to new information and uses signposts to establish thresholds for monitored 
variables that trigger re-evaluation.

 Examples of case studies and methods used for stochastic scenario evaluation and risk assessment include: 
• Stratified Sampling and Slicing & Latin Hypercube Sampling (both discussed on previous slide) represent methods to assist planners in  understanding the distributions of outcomes and ensuring that the edge 

cases represent credible boundary conditions.  Down sampling is not limited to these methods, many statistical approaches can be used to understand the width of the distribution and reduce the number of 
scenarios requiring evaluation.

• Stochastic Portfolio Risk Evaluation accounts for uncertainty by considering a range of possible futures and their associated probability of occurring, as opposed to a single Scenario.  Monte Carlo analysis and 
Probability Trees are a common framework.  The approach allows planners to quantify the distributions of total system costs and environmental outcomes.  Idaho Power, CEI South, Pacificorp, TVA and AES Indiana 
have all implemented a variation of this framework in their long-term planning processes.  

• Robust and Adaptive Planning is an uncertainty and risks management methodology employed out-of-model to improve long-term planning. Involves a vulnerability assessment to identify uncertainties that pose 
the highest risk and a monitoring plan to identify new information regarding key uncertainties.  Signposts establish thresholds for monitored variables which trigger re-evaluation.  A probabilistic extension of this 
framework uses sequential Monte Carlo analysis to extend the sampling strategies. ConEdison’s 2021 Climate Resiliency Plan leveraged this approach.

Study Recommendation
Adopt Stochastic Scenario Evaluation and Risk Assessment

E3 recommends enhancing the industry-standard approach to scenario evaluation in long-range planning using stochastic or out-of-model risk methodologies
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 Contingency & Outages

• The bare minimum planning requirement across NERC members requires study of impacts across P0 through P7 planning events (normal system operations, single 
contingency and multiple contingency conditions) defined in the TPL-001-5 transmission system planning performance requirements.

• The common approach in industry to plan for outages and contingencies includes detailed power system studies, using models which are designed to align with system 
topology at a high degree of accuracy.  Complex evaluations of AC power flows across bulk electric system elements are assessed, and typically also include tie lines to 
neighboring systems.

• Lines are screened for line loading across emergency, normal, and safe loading limits, and where applicable, voltages are screened against emergency and normal limits 
which allows planners to identify of critical contingencies based on risk thresholds. All screening is aimed at minimizing disruption and maintaining grid stability during 
unexpected transmission line failures.

• Transmission value is concentrated in only a few challenging hours, so system planners also evaluate scenarios which can be characterized as high-value periods that are 
dominated by transmission congestion.  Historically, summer or winter peaks have been prioritized by system planners, however increasing renewable penetration and 
weather uncertainty is leading to increased focus on additional non-peak scenarios.

– Examples of additional scenarios evaluated could include summer twilight (solar roll-off), extended periods of low wind generation (dunkelflaute), reverse transmission 
flows (import vs. export) and periods of extremely high renewable output (curtailment requirements).

 Weather Related Variability

• There is considerable overlap between the contingency scenarios discussed above and the inherent weather-related variability which led to periods of challenging conditions.  
Planners evaluate the impacts of high and low renewable output, system characteristics under extreme weather conditions such as major storms, or periods of high demand 
due to heat waves and cold snaps.

• Power Flow modelling is extremely complex and computationally expensive, so system planners will evaluate snapshot hours (scenarios) which may be representative of 
challenging system conditions that are likely to be faced across a distribution of weather years.  The problem system planners face is correctly identifying the hours which 
truly represent worst-case conditions that challenge grid stability.

• Production Cost Modeling using DC power flows is much less computationally expensive, yet it relies on system topology developed for the Power Flow model.  The degree of 
system component details is much lower in PCM compared to PFM, but the lower complexity allows the evaluation of entire weather years.  The identification of hours 
representative of high system stress in PCM followed by evaluation in PFM is becoming an increasingly common practice among system planners.  This “feedback loop” 
across models allows planners greater accuracy in capturing high-stress periods across the broad distribution of weather variability.

Power Flow Modeling
Common Approaches to Addressing Uncertainty Across Industry
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Addressing Uncertainty within Power Flow
Outage and Contingency Risk

Power Flow

Source of 
Uncertainty Details NERC TPL Standard Monte Carlo Contingency 

Enumeration
Dynamic Contingency 

Selection

Outage and Contingency

Outage Events
& Failure Rates

Technique Deterministic Probabilistic Probabilistic Probabilistic

Overview of Method

Evaluation of loss of largest source 
under multiple system conditions, 

Also called N-1-1 multiple 
contingency analysis, and evaluates 
a transmission network’s reliability 
after sequential disruptions occur.  

Method based on simulating many 
random trials of system conditions, 

tabulating the results and interpreting 
the results as probabilities of the 

various events and outcomes. Each 
trial simulates a potential system state 

with a combination of operational or 
failed components.

Moving deeper into second order 
contingencies to check for cascading 
failures. A method that enumerates 

(iterates through) system 
contingencies based on their potential 
impact on system stability and ranks 
each contingency in terms of severity 

using a performance index

Leverages Bayesian updating scheme to 
adjust failure rates by incorporating new 

data over time, refining predictions based 
on past performance and observed 

conditions. Combines historical failure 
data with recent factors (component age, 

weather impact, and operational stress) to 
improve accuracy in failure predictions

Workflow

Involves running power flow model 
for a contingency or set of key 

contingencies;
Evaluation of P1 through P7 
contingencies in addition to 

Extreme Event Scenarios

Involves running power flow model over 
many different outage conditions. Each 

random trial represents a different 
system state, and each component has 

its own probabilistic model.

Reduces the scope to the most critical 
contingencies. Analyzes the most 

severe N-1 contingencies and 
proceeds until no significant reliability 

issues are identified.
Severity is measured using reliability 

indices.

A discarding method that allows operators 
to eliminate less critical contingencies 

using a user-defined residual risk 
threshold.  Can be combined with 

economic assessment for the tradeoff 
between VOLL and cost of investment

Models Used PSS/E, TARA, many commercially 
available tools

NH2 (Brazil), MECORE  (BC Hydro).  
Some custom application in EPRI 

TransCARE, PSS/E, 

Key contingency selection approach in 
TransCARE and PSS/E Custom ML algorithms 

Data Needs System topology, load forecasts, 
known outages

Historical failure rates, component data 
(system topology)

Historical failure rates, component 
data

Load, weather, and generation and 
historical failure probabilities

Existing Case 
Studies or 
Applications

NERC Planning Standard
Well documented, common 

practice

Limited availability outside of research 
and research grade tools due to the 

massive computational complexities 
for solving a full system

Functionality built into existing models
Most application limited to short-term.  
GARPUR RMAC Norway study explores 
long-term.  No commercial tools exist

Explored in 
More Detail

Probabilistic Deterministic Case Study
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Outage and Contingency Risk
Monte Carlo (and Markov Chain)

Monte Carlo Flow ChartMethod Overview:
 Monte Carlo simulation is based on simulating many random trials of system conditions, tabulating the results and interpreting the 

results as probabilities of the various events and outcomes involved.

• Each trial represents a different system state, determined by randomly extracting an outcome for the component reliability models of 
the system (i.e., it is assumed that each component is characterized by a probabilistic model).

• Contingency selection involves randomly selecting outages for system components based on predefined probability distributions.  
Distributions may be defined using failure rates and repair times from historical data.

• The results of numerous trials are used to estimate the likelihood of system failures and other reliability metrics.  The number of trials 
is independent of system size; however, most practical applications range from 1,000-10,000 iterations1, before remedial actions.

 Markov Chain Monte Carlo simulations generate dependent samples from a desired distribution, rather than independent observations 
(random trials) leveraged in typical Monte Carlo simulations.  Markov models can be more computationally efficient for large-scale power 
systems, however on a large-scale power system the calculations still may be too large to consider.

Inputs:
 Component reliability data such as failure rates, time-to-repair, and system load forecasts.
 Historical data from sources like NERC’s GADS and TADS databases to model failure probabilities.

Tools Used:
 Limited availability outside of research grade tools, but some functionality built some Power Flow tools such as EPRI TransCARE, PSS/E, 

however these primarily rely on contingency enumeration.  NH2 (CEPEL Brazil) and MECORE (BC Hydro) offer functionality but are not 
commercially available or have not been used in the US.

Key Takeaways:
 Computational Issues: Typical Monte Carlo analysis requires 1,000-10,000 iterations for most practical applications.  In Markov Chain 

analysis, a system with n components, each with 2 states (up or down) will result in a total of 2n states.  For example, if n = 2000, then the 
number of states (~1.148x10602) may be too large to consider.  This is further complicated when remedial actions are evaluated

 Modeling Challenges: It is challenging to model failure/repair processes associated with generators and transmission, as well as system 
load variations over time, effects of weather on failure/repair processes, and remedial actions

 Tool Availability: Commercially available tools primarily rely on contingency enumeration.  Custom code or research grade tools have 
been used to assess MC applications for contingency assessment

K < N?

Source: EISPC White Paper:  Incorporation of Risk Analysis into Planning Processes
           1 – Monte Carlo Simulations in Load Flow Calculations

Power Flow Modeling

https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9051471&fileOId=9051472
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Outage and Contingency Risk
Contingency Enumeration

EPRI Wind-chime Contingency Enumeration Scheme
Method Overview:

 Contingency Enumeration is a method that enumerates system contingencies based on their 
potential impact on system stability and ranks each contingency in terms of severity using a 
performance index

• Contingencies are selected based on the N-k criterion (N-1, N-2), where "k" represents the 
number of simultaneous failures

• The Process begins by analyzing the most severe N-1 contingencies and proceeds until no 
significant reliability issues are identified

• Severity is measured using reliability indices such as overload violations, voltage violations, 
loss of load, and expected unserved energy (EUE)

Inputs:

 Historical failure rates (NERC’s GADS and TADS) & Component data (voltage ratings, thermal 
limits, and protection settings)

Tools Used:
 EPRIs TransCARE  and Siemens PSS/E use contingency enumeration as an embedded contingency 

selection method. 
 Post-processing tools (e.g., python or MATLAB-based) are often applied to automate contingency list 

generation, analyze protection and event data, perform critical event analysis, summarize simulations, 
and rank contingencies based on security metrics like load loss and cascade frequency  

Key Takeaways:
 Effective for identifying critical outages that can be overlooked in deterministic methods. Computationally 

expensive for large systems, especially at higher  N-k levels. 
 May overlook rare, events with severe impacts. Focuses mainly on most-likely events based on predefined 

criteria

Power Flow Modeling

Wind-chime Enumeration1 begins with a “Base Case” and all first-level contingencies 
are enumerated and ranked in decreasing order of severity.  Second outage-level 

contingencies are obtained from each contingency in level one by having one more 
component on outage and then ranked in the same way. 

The procedure continues until it reaches the predefined contingency depth level . In 
each outage level, the reliability evaluation starts from the highest ranked 

contingencies in terms of severity. 

If the evaluation results of several successive contingencies show zero contribution to 
system unreliability, it is reasonable to conclude that the remaining contingencies in 
this level do not need to be investigated since they are considered to affect system 

reliability less severely. 

Source: EISPC White Paper:  Incorporation of Risk Analysis into Planning Processes
1- A Comprehensive Approach for Bulk Power System Reliability Assessment

https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..
https://www.researchgate.net/figure/Wind-chime-contingency-enumeration-scheme_fig3_224317336


28

Outage and Contingency Risk
Case Study: TVA Reliability Study

Approach:

 Built-in functionality of contingency enumeration in TransCARE was used to 
generate a set of N-1 and N-2 contingencies, evaluating both single and double 
outages of transmission lines, transformers and generating units

 Outage probabilities were informed by historical data from 
NERC’s GADS  and TADS, which provided failure rates and restoration times for 
the relevant components.

 The tool systematically tested these contingencies across the study area's high-
voltage network (161 kV and above), focusing on two specific zones affected by 
the proposed tie-lines. 

Key Outcomes:

 System Problem Approach: Evaluated specific system issues like voltage 
violations and overload frequency at individual circuits and buses.

 Capability Approach: Measured overall system reliability, including probability 
of load loss and Expected Unserved Energy (EUE)

 The analysis showed no significant reliability improvement from adding either of 
the proposed tie-lines

Number of  Contingencies analyzed 

Sample Results from the Capability Approach

The study focused on assessing whether adding two new transmission 
lines (AEP 765 kV and AECI 500 kV) would improve the reliability of the 

TVA bulk transmission system

Source: EISPC Incorporation of Risk Analysis into Planning Processes

Power Flow Modeling
Contingency Enumeration

https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
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Method Overview:

 The Generally Accepted Reliability Principle with Uncertainty Modeling (GARPUR) Reliability Management Approach and Criterion (RMAC) framework applies probabilistic risk 
assessment to identify and rank transmission contingencies from real-time to long-term planning.  Each timeframe employs custom methods to manage risk based on system conditions.

• Initial applications have been for Real-Time (operational risk assessment) using Dynamic Contingency Selection (DCS) and a Discarding Principle to prioritize high-risk contingencies 
based on live conditions. 

• Long-Term applications have been studied to compare grid expansion alternatives to ensure high security of supply in South-West Norway over a 40-year horizon

• Similar methods could potentially be employed to identify high-impact contingencies and/or congested elements as part of the flowgate identification process. 

 The Long-Term (planning scale) application of the framework utilizes macro scenarios and Monte Carlo simulations to model demand and production variability for zonal-to-nodal 
contingency analysis. 

 The fundamental approach to the Long-Term application of the RMAC method was combining a probabilistic reliability assessment with an economic assessment of performance which 
was measured through interruption cost

• Reliability Assessment: Custom tools were used for system response simulation and failure rates, which were adjusted with a Bayesian1 updating scheme

• Economic Assessment: A framework was used to calculate the societal cost of unserved energy.  Long-term load flow scenarios using forecasted load-duration curves allow for the 
estimation of interruption cost metrics

Inputs and Tools:

 Significant Historical data collection is required and planning scenarios, including seasonal load profiles and outage schedules, as well as macro-level zonal scenarios with aggregated 
demand and supply data.

 GARPUR RMAC framework uses custom built tools and generated algorithms

Key  Takeaways:

 Effectively identifies high-risk contingencies and dynamically reduces unnecessary calculations. ML models enhance real-time flexibility, with DCS primarily optimized for real-time, 
but adaptable for mid- and long-term planning. 

 Strict compliance to N-1 increases costs Incremental investment cost for a higher degree of reliability may exceed the societal cost of interruption

 No commercial tools are available Tools need to be developed by experts who both understand the subject matter, approach and requisite programming skills

 Current Real-time applications are limiting. DCS method could be applied to bridge the gap between operational and long-term planning

Outage and Contingency Risk
GARPUR RMAC Dynamic Contingency Selection (DCS)

Power Flow Modeling

Source: The GARPUR Project Results ; GARPUR – Results From Near Real-Life Pilot Testing

1 – Bayesian Updating Scheme

https://cordis.europa.eu/docs/results/608/608540/final1-d11-1d-garpur-final-report.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
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Outage and Contingency Risk
GARPUR RMAC DCS: Realtime Analysis

RMAC Method: Dynamic Contingency Selection

Source: The GARPUR Project Results

Method Overview:

 The GARPUR RMAC framework applies probabilistic risk assessment to identify and rank transmission 
contingencies across real-time, mid-term, and long-term planning.  Each timeframe employs tailored 
methods to manage risk based on system conditions.

• Real-Time: Uses Dynamic Contingency Selection (DCS) and a Discarding Principle to prioritize high-risk 
contingencies based on live conditions. 

• Mid-Term: Employs parallel simulations and stochastic optimization to plan outage schedules over 
months.

• Long-Term: Utilizes macro scenarios and Monte Carlo simulations to model demand and production 
variability for zonal-to-nodal contingency analysis.

Inputs and Tools:

 Inputs vary depending on horizon being evaluated, however real-time leverages current operational 
data, including weather conditions, load levels, and generation availability.

 Mid-Term and Long-Term focus on historical data and planning scenarios, including seasonal load 
profiles and outage schedules, as well as macro-level zonal scenarios with aggregated demand and 
supply data.

 Across all scenarios, the GARPUR RMAC framework uses custom built tools and generated algorithms

Key  Takeaways:

 Effectively identifies high-risk contingencies and dynamically reduces unnecessary calculations. 
ML models enhance real-time flexibility, with DCS primarily optimized for real-time, but adaptable for 
mid- and long-term planning. 

 Current Real-time operational applications are limiting. DCS method could be applied to bridge the 
gap between operational and long-term planning

Power Flow Modeling
Dynamic Contingency Selection

https://cordis.europa.eu/docs/results/608/608540/final1-d11-1d-garpur-final-report.pdf
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Outage and Contingency Risk
Case Study: GARPUR RMAC Iceland (Short-Term)

Framework of Threat-Based Failure Rate Models
The Icelandic power system served as a proof of concept for the EU RMAC real-time reliability 

assessment framework

Source: GARPUR Iceland Case Study 

This application of GARPUR RMAC have been focused on real-
time reliability risks

Similar methods could potentially be employed to identify high-
impact contingencies and/or congested elements as part of the 

flowgate identification process. 

Framework addresses integration in real-time application

Approach:
 The study assessed if real-time Dynamic Contingency Selection could improve reliability by 

dynamically adjusting contingency lists to prioritize high-risk N-1 contingencies in 
response to changing conditions.

 Threat-based dynamic models were selected to calculate contingency failure rates. These 
models differ from other (i.e., state-based) models as they focus on a specific threat such 
as wind, lightning, earthquake etc. Different threats then can be aggregated to a single 
failure rate metric in real-time. 
• Failure rate models were built using historic outage data and 10 years of Icelandic weather data. 
• For example, wind-dependent  models were trained on 8 years (2005-2012) and tested on 2 years 

(2013-2015) to be incorporated in the algorithms.
• The study focused on N-1 contingencies, continuously adjusting the list based on real-time weather 

data, load forecasts, and historical threat- based failure probabilities.
• A discarding principle was applied to filter out low-risk contingencies, keeping the list manageable 

while focusing on critical events.

Key Outcomes:
 The reliability assessment outputs key parameters, including assessed and residual risk (in 

kISK/hour) estimating interruption costs for the next hour, with residual risk as an error 
margin.

• Other outputs include the number of contingencies assessed, probability of a contingency 
within the hour, computation time, and indicators of significant state changes

 Reducing the residual risk target affects both accuracy and contingency set size.

•  A lower target improves accuracy but requires assessing more contingencies, while a higher 
target reduces computational load at the cost of precision. Optimal targets should balance 
accuracy and resource constraints

Power Flow Modeling
Dynamic Contingency Selection

https://opinvisindi.is/bitstream/handle/20.500.11815/1193/Final%20draft_Samuel%20Perkin.pdf
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Outage and Contingency Risk
Case Study: GARPUR RMAC Norway (Long-Term)
Approach:

 The study compared two grid expansion alternatives to ensure high security of supply in South-
West Norway 

• The societal costs for each alternative were estimated using probabilistic reliability assessment 
and interruption cost metrics.  

• The approach used a framework for calculating the cost of energy not served (value of lost load) to 
assess the societal costs for each expansion alternative

 The study used in-house tools which evaluate system response simulation and failure rates which 
were adjusted with a Bayesian updating scheme (estimating probability using a prior distribution).

 Long-term load-flow scenarios were created which used forecasted load duration curves

• Load flow scenarios allowed for the estimation of interruption costs across the grid expansion 
cases

Key Outcomes:

 Investment cost for increased reliability were compared to the societal costs of interruption

 Different investment alternatives compared to typical N-1 approaches may be chosen when using 
probabilistic reliability assessment.  This resulted in significant estimated societal cost savings

 Higher security of supply did not defend higher investment costs
• The cheaper alternative reduced investment costs by 25% or €110 million, while expected 

interruption costs increased by €5 million
• Strict compliance with N-1 resulted in earlier investments in transmission infrastructure.  annual 

savings of about 7 million Euros were estimated using the probabilistic methodology

 No commercial tools were available, significant work was required to develop custom tools for data 
collection and handling, as well as for assessment

• Monte Carlo simulation was the primary method for system response simulation, and 
improvements to computational efficiency were recommended

Norway RMAC Study Results

Source: GARPUR – Results from near real-life pilot testing

The study found that the positive benefits of higher security in 
Alternative 2 did not outweigh its larger investment cost

Bayesian-Updated Failure Rates

• Bayesian Inference is a method of statistical 
inference used to calculate a probability using a prior 
distribution.

• This approach adjusts failure rates by incorporating 
new data over time, refining predictions based on past 
performance and observed conditions

• Initial failure rates are updated using Bayesian 
inference, which combines historical failure data with 
recent observations, accounting for factors like 
component age, weather impact, and operational 
stress to improve accuracy in failure predictions

Power Flow Modeling
Dynamic Contingency Selection

https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
https://www.sintef.no/globalassets/project/garpur/deliverables/garpur-d8.3-results-from-near-real-life-pilot-testing-public.pdf
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Addressing Uncertainty within Power Flow
Weather Related Variability

Power Flow

Source of Uncertainty Details Extreme Event Representative Weather Year Stratified Sampling Using 
Monte Carlo

Weather Related Variability

Extreme Weather 
Events
& 
Renewable 
Output

Technique Deterministic Deterministic Probabilistic

Overview of Method

Evaluating the ability of the electric 
system to respond to weather 

conditions by stress testing with 
extreme weather scenarios. 

Commonly used framework by 
system planners to choose 

“snapshot” hours

Evaluating the system’s performance over periods 
of high stress that are representative of conditions 

that could occur within a typical weather (i.e., 
winter or summer peak).  Analysis of multiple 

weather years are used to identify the distribution 
of renewable output.  The derived distribution is 

used to inform what conditions are evaluated in the 
power flow case

Primarily academic method developed 
by EPRI method to probabilistically 

create dispatch scenarios which 
capture uncertainty due to variation in 

renewable output, weather related load 
variability and transmission component 

performance

Workflow

Weather impacts to load and 
generation can be drawn from data on 

comparable historical events. 
“Snapshot” hours are chosen which 

are representative of challenging 
system conditions due to 

weather/load patterns or extreme 
events.

Comprehensive weather impacts to load and 
generation can be evaluated by selecting hourly or 

“snapshots” which represent conditions that 
correlate with a high system stress period.  Due to 

the complexity of PFM, “snapshots” are 
representative hours that are evaluated at a high 

degree of detail.

The input data is divided into sub-
populations, and it is assumed that 

each is homogeneous. Data is divided 
ensure that scenarios which have low 

probability of occurring will still be 
captured in one of the strata and won’t 

get lost in the entire population

Models Used Pre-processing or identified hours 
from PCM results PSS/E, TARA, many commercially available tools EPRI Stratified Sampling Monte Carlo 

model

Data Needs Extreme event correlated 
load/generation

Complete weather year and correlated 
load/generation

Probability distributions for load and 
renewable generation

Existing Case Studies or 
Applications

NREL Evaluation of Xcel Energy’s 
2030 Colorado Preferred Plan Common modeling practice EPRI Research

Explored in 
More Detail

Probabilistic Deterministic Case Study
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Addressing Uncertainty within Power Flow
Weather Related Variability (Continued)

Power Flow

Source of 
Uncertainty Details Stochastic 

Production Statistical Weather Prediction Composite Load Level 
(CLL)

Chronological AC Power Flow 
Automated Generation (C-PAGE)

Weather Related Variability

Extreme 
Weather 
Events
& 
Renewable 
Output

Technique Probabilistic Deterministic or Probabilistic Probabilistic Probabilistic

Overview of Method

Seasonal variation in 
generation (or load) is 

aggregated into a profile 
detailing generation as a 
function of probability of 

occurrence. 

Simple methods such as Measure 
Correlate-Predict (MCP) are used for 

filling gaps in location specific load and 
resource generation data.  Extremely 

complex Numerical Weather Prediction 
(NWP) and Global Climate (GCM) 

models are to mathematically describe 
atmospheric processes

Composite load levels detail 
chronologically correlated 

plant-level renewable 
generation and bus-level load 

for specified weather 
conditions.

C-PAGE is used to convert system dispatch 
from a Production Cost (PCM)  model into 
time-sequenced Power Flow (PFM) model 
runs for a reliability study.  Tool allows for 

convergence of PCM with PFM

Workflow

Historical data is used to 
build probability 

distributions that can be 
assessed in many ways to 

yield a quantification of 
weather-related variability 

across a wide set of weather 
conditions.

Correlations between existing 
measurements at a renewable resource 

site and a nearby site with a complete 
dataset are established through 

statistical models such as linear or 
moving average.

Coincident historical data is 
used to establish a high-

resolution probability 
distribution for generation and 

load. Outputs are generated 
for specified weather 

conditions, referred to as 
Composite Load Levels (CLL)

As a first step an AC convergence process 
occurs between the DC power flow in the 
PCM and the PFM.  To achieve this system 

topologies are aligned,  line losses are 
equal and voltage violations are mitigated.  
Power flow cases are selected which are 

representative of the full year using slicing 
and Latin-Hypercube sampling

Models Used Monte Carlo, Probability 
Trees

MCP (common statistical models)
NWP (NOAA, NCEP) EPRI CLL PNNL C-PAGE

Data Needs Historical load and 
renewable generation data

Ranges from site specific to highly 
detailed observations across many 

stations

Weather correlated plant/bus-
level load and generation

Production cost model outputs, system 
topology, seasonality across generation 

types

Existing Case Studies 
or Applications

NREL Evaluation of Xcel 
Energy’s 2030 Colorado 

Preferred Plan

MCP commonly used in wind site 
assessment.  NWP used for weather 

forecasting and climate change
EPRI SPP CLL Demonstration C-PAGE WECC Transmission Expansion 

Case Study (2024 DOE NTP Study)

Explored in 
More Detail

Probabilistic Deterministic Case Study
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Weather Related Variability
Stratified Sampling Using Monte Carlo

Stratified View in Monte Carlo Simulation

Sources: LBNL Transmission Value ; EISPC Incorporation of Risk Analysis into Planning Processes

Monte Carlo weather simulations for weather 
variability can be adapted for use in power flow 

modeling, production cost modeling, and capacity 
expansion planning

Method Overview:

 EPRI’s approach to probabilistically develop dispatch scenarios which capture variability due to:

• Variation in renewable output, weather related load variability, uncertainty in economic load growth and 
generation/transmission component performance

 The input data is divided into sub-populations, and it is assumed that each sub-population is homogeneous.  (i.e., 
that data points in a sub-population have similar system conditions).

• The data is divided into multiple strata to ensure that scenarios which have low probability of occurring will still be 
captured in one of the strata and won’t get lost in the entire population

• The entire population is dominated by “average” scenarios occurring more frequently on the system. 

 Monte Carlo sampling is used to produce a user-defined number of dispatch scenarios in each strata

Inputs and Tools: 

 Time series data of system load, renewable output, and hydro output (if available), historical performance of generating 
units and transmission components

 No commercially available tools. The method is an extension/application of Latin Hypercube sampling

Key Takeaways:

 Dispatch scenarios created using Monte Carlo sampling system planners to capture average scenarios as well as low 
probability, high impact scenarios 

 Methodology also has applications for producing deeper contingencies (beyond N-1) for reliability evaluation using 
Monte Carlo

 Method has not been tested on a realistic system and should primarily be considered academic at this point.  An 
application for the method was used by EPRI in 2020 for shade and sun stratum (vegetation cover) on a solar installation 
owned by Georgia Power Company

Power Flow Modeling

https://live-lbl-eta-publications.pantheonsite.io/sites/default/files/lbnl-empirical_transmission_value_fact_sheet-august_2022.pdf
https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..
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Weather Related Variability
Statistical Weather Prediction

Method Overview:

 The Measure-Correlate-Predict (MCP) method is an effective deterministic strategy to fill gaps in location specific load and resource generation data. The method uses correlations 
(usually linear) of the available observations at the target site and high-quality observations at a nearby location to predict the missing data.

• The MCP method is commonly used in wind resource assessment, however MCP-like methods can also be used to synthesize load time series.  Measurements from two sites are 
correlated and then estimates are created with a transfer function

 Numerical Weather Prediction (NWP) models are the basis for modern-day weather forecasts and the core component in datasets utilized for power system modeling. These models can 
be deterministic or probabilistic and are also used for Global Climate (GCM) modeling to understand climate change.  

• Complex models are used which mathematically describe atmospheric processes as a system of regular and partial differential equations which could describe the state of the entire 
atmospheric system

Inputs and Tools: 

 MCP: Reference high-quality long-term meteorological record from a nearby site and short-term observations from a target site.  Data must coincide in length and time-period for 
determining correlations. Simple commonly available statistical models (such as linear or moving average)  can be utilized.

 NWP: Requires extensive highly detailed observations from many weather stations to produce detailed outputs.  Physics-based models are utilized, and forecasts are produced by large 
national forecast centers like NOAA and NCEP in the US.  Generative Machine Learning (ML) models are a new class of method for downscaling of NWP outputs and can be trained to 
produce multivariate (wind, temperature, etc.) data-sets. 

Key Takeaways:

 MCP is relatively simple and can be performed using common statistical modeling tools.  The method yields reasonable distributions with average errors between target and candidate site 
but can lead to very large errors in any given hour. MCP methods typically relate 1 or 2 predictions (i.e., wind and/or temperature) and is not effective in predicting a daily profile of wind or 
solar generation

 NWP modeling is an extremely complex process which can yield much more detailed results such as daily weather correlated wind, solar and load profiles.  Power system planners need to 
have a basic understanding of how the data were produced or engage with a meteorologist with an NWP background.  

Source: MCP Method Visualization ; Meteorological Data Fundamentals for Power System Planning

Several methods can be used to assess gaps in existing weather data used in power system planning.  These methods range from relatively 
simple correlation exercises to extremely complex mathematical representations of atmospheric processes

Power Flow Modeling

https://www.sciencedirect.com/science/article/abs/pii/S1364032113004498#preview-section-abstract
https://www.esig.energy/wp-content/uploads/2023/10/ESIG-Weather-Datasets-meteorology-101-2023.pdf
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Weather Related Variability
Composite Load Level (CLL)

Method Overview:

 The CLL methodology takes synchronized, chronological wind and PV generation output and 
coincidental bus load data and probabilistically represents the inherent correlations in renewable 
generation and load levels

• These generation and load levels are represented as composite snapshots of wind and solar 
outputs at the plant-level with time-correlated load at the bus-level which can be used as part of a 
power flow base case

 CLL uses a mathematical model to express variability and uncertainty in load and coincident wind 
and PV generation using a small number of independent, random variables

• The model aims to fit historical data as closely as possible to the random variables, and the 
parameters are found using least-square estimation

• Once the model parameters are found, the model can be used to provide a user specified number 
of wind/PV output as well as load level scenarios called CLLs

Inputs and Tools: 

 Time series data for each wind and PV plant as well as system load

 EPRI developed tool that generates CLLs as power flow cases

Key Takeaways:
 Data requirements are onerous: historical time series for each plant is required.  Any gaps in datasets 

must be filled before use
 Computationally intensive: calculation involves inverting metrics of large dimensions.  In the EPRI SPP 

case study sparsity techniques were used to reduce the computational time and storage required for 
large power systems

 Unit Commitment and SCED required to solve the power flow for the CLLs for the entire case

CLL Methodology

Statistical model uses historical time-coincident data of loads 
and renewable generation to produce composite power flow 

cases for weather variability 

Sources: EISPC Incorporation of Risk Analysis into Planning Processes ; EPRI CLL Tool

Composite power flow cases can be used to evaluate to 
perform granular analysis of the reliability of existing and 

proposed resources and transmission networks under 
different weather conditions 

Power Flow Modeling

https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..
https://restservice.epri.com/publicdownload/000000003002027832/0/Product
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Weather Related Variability
Case Study: EPRI SPP

Approach:

 EPRI demonstrated the applicability of the CLL tool in SPP to assess variability and uncertainty in renewable 
generation and system load

• CLL tool developed 10 reduced generation and load level scenarios (CLLs) for evaluation in TransCARE

 Power flow case used was developed by EIPC for the 2030 SPP system with 30% of load met by renewable 
resources

• 23 GW of wind and 5GW of solar capacity was modeled and the case was modified to include a new 765kV sub-network 
to provide new paths for the incremental renewable generation

• SPP provided historical hourly time series data of the loads and renewable plants and synthesized data from NREL was 
used for proposed wind and solar plants

 28GW of incremental generation created a significant imbalance in generation and load

• Unit commitment and dispatch was performed on each CLL to redispatch thermal generation to accommodate 
incremental renewable generation

 Generated CLLs were 10 snapshots of annual system variation (with redispatch) and were analyzed in 
TransCARE

• Study was very large, so TransCARE’s contingency enumeration logic was used to evaluate one generator and one 
transmission component simultaneously (i.e.,N-2).  

• No remedial actions were applied for thermal overload or voltage violations. Remedial actions were applied for outages 
and system loads were dropped as a last resort.

Key Outcomes:

 Results demonstrated the CLL tool could be used to capture variability and uncertainty of renewable generation 
and load
• Planners often use engineering judgement deterministically to consider, so CLLs could be a significant 

improvement
 Load loss indices were generated which provided granular reliability numbers for individual load buses which 

could be used for identifying system weak spots

CLL Results for a Sample Wind Plant

Thermal and Voltage Violations

Source: EISPC Incorporation of Risk Analysis into Planning Processes

Variation in Wind Generation Output for 10 CLLs

Thermal overloads were more prominent than voltage violations

Power Flow Modeling
Composite Load Level

https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..


39

Weather Related Variability
Chronological AC Power Flow Automated Generation (C-PAGE)

Method Overview:

 The Chronological AC Power Flow Automated Generation (C-PAGE) tool is used to convert system dispatch from 
a Production Cost model (PCM) into time-sequenced Power Flow model (PFM) runs for a reliability study

• The tool allows for the convergence of PCM with power flow cases to improve power flow modeling practices

• Can reduce runtime for a converged AC PFM from hours (or days) to a minutes for any large, interconnected 
system. Allows system planners to assess the solutions of thousands of chronological power flow cases

 AC Power Flow Convergence Process:

1. Preparing DC power flow cases using production cost modeling results: System topologies between the PFM 
and PCM must match so generation and load outputs are disaggregated from the power plant and BA level to the 
nodal level.  Mappings are illustrated in the flow diagram

2. DC-to-AC convergence process: Line losses need to be equal between the DC PCM and the AC PFM.  Nodal loads 
were required to be iteratively reduced until an AC PFM solution was found 

3. Reactive power planning for voltage improvement: C-PAGE scanned all bus voltages to identify voltage violations 
and adjusted or added local reactive power devices to mitigate bus voltage violations.

 Chronological power flow cases are selected using an intelligent sampling method

• Approach finds a small number of hourly cases representative of the full year to account for seasonal and 
diurnal variability of renewable generation.  Slicing and Latin-hypercube sampling was leveraged for this step.

Inputs and Tools:
 C-PAGE Tool developed by Pacific Northwest National Laboratory is used to create the linkage between PCM 

and PFM

Key Takeaways:
 Linkages between PCM and PFM is critical for evaluating the reliability of future scenarios. Creating linkages 

between the PCM and the PFM enables planners to investigate reliability scenarios with high penetrations of wind, 
solar, and storage (i.e., the future decarbonized grid).

 Down sampling is necessary to reduce the problem size.  Intelligent sampling was an effective method to account for 
representative variability in generation and load across an entire year

PNNL C-Page Tool Methodology

Source: DOE National Transmission Planning Study

Intelligent Sampling Method

Disaggregation process from PCM to PFM

Power Flow Modeling

https://www.energy.gov/sites/default/files/2024-10/NationalTransmissionPlanningStudy-Chapter4.pdf
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Weather Related Variability
Case Study: Chronological AC Power Flow Automated Generation

Approach:

 C-PAGE tool was used to convert system dispatch time series from Production Cost model (PCM) into time-sequenced Power 
Flow model (PFM) runs for a reliability study of transmission expansion scenarios

• The study used C-PAGE to demonstrate performance on the 2028 WECC System Stability Planning Anchor Dataset (ADS) PCM - 
22,509 buses, 4,417 generators, 11,126 load buses, and 1,766 transmission lines

• Transmission projects that are either under construction or have significantly progressed through permitting were deemed likely 
to materialize

 The study identified additional transmission capacity for 2035 across two scenarios

• Both scenarios were characterized by high demand growth (21% relative to 2030 Industry Case) and a 90% decarbonization by 
2035 constraint.

• AC scenario facilitated transmission expansion between planning regions (FERC Order 1000) and the Limited scenario only 
allowed intra-regional transmission buildouts (including minor exceptions)

• The zonal models from the capacity expansion results were converted to a detailed nodal PCM

 The procedure proposed an approach to maintain voltage within acceptable range across large, interconnected systems.

• All procedures were designed to be integrated into an automation tool to minimize manual intervention

• GridView was used for production cost, and the developed tool was capable of saving power flow cases in PowerWorld, PSS/E 
and PSLF formats

Key Outcomes:

 Approach integrates all model frameworks: the study method incorporated transmission capacity expansion, production cost and 
power flow frameworks across multiple models in an integrated approach.  Primary application is linkage between PCM and PFM

 Linkages between PCM and PFM is critical for evaluating the reliability of future scenarios.  The study developed AC power flow 
models, including peak load models for different seasons.  

• The models included scenarios that correlated to high solar penetrations, as well as models that show peak wind. Creating linkages 
between the PCM and the PFM is critical for investigating the reliability scenarios with high penetrations of wind, solar, and storage

AC Scenario Transmission Expansion

Sources: Automated Tool to Create Chronological AC Power Flow Cases for Large Interconnected Systems
DOE National Transmission Planning Study

500, 230 and 345-kV circuits were added or 
updated.  New HVDC circuits were also added

Power Flow Modeling
C-PAGE

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9416491
https://www.energy.gov/sites/default/files/2024-10/NationalTransmissionPlanningStudy-Chapter4.pdf
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Addressing Uncertainty within Production Cost
Outage and Contingency Risk

Production Cost

Source of Uncertainty Details PCM and PFM Modeling 
Linkages Monte Carlo Economic Cost of Uncertainty

Outage and Contingency

Outage Events
& Failure Rates

Technique Deterministic Probabilistic Hybrid

Overview of Method

Capturing key constraints and 
topology from power flow model as 

contingencies and/or monitored 
elements 

Randomly selected draws across a specified set 
of inputs.  Probabilistic production cost modeling 

can capture the uncertainty many variables 
including unit availabilities, loads and generation

Using reliability indices and associated 
unreliability costs to compare the value 
of transmission projects while ensuring 

there are linkages to the
probability of contingencies

Workflow

Involves modeling and enforcing 
contingencies in the unit 

commitment and economic dispatch 
stages of the production cost model.  
“Snapshot” periods may be selected 

from the resulting PCM runs and 
further evaluated in the PFM for 

reliability.  May be a manual process 
for re-running PFM scenarios but 

room exists for automation using APIs

Involves running many simulations to assign 
multiple values to an uncertain result to achieve. 

Estimates the probability function of random 
variables by simulating the system using a 

random number generator to produce a sample 
from the probability function.  Process is 

repeated many times (hundreds of draws or 
more) and the results are averaged to estimate 

the expected value

The approach evaluates the tradeoff 
between incremental investment cost of 

transmission (for a higher degree of 
reliability) and the societal cost of 

interruption. Quantifies the economic 
costs associated with outages and 

the(i.e., LOLE & EUE) by calculating the 
financial impact of unserved energy

Models Used Hitachi Gridview, PLEXOS, PROMOD, 
PNNL C-PAGE, Custom Tools

PLEXOS, UPLAN, PROMOD, many commercial 
models available

UPLAN, PROMOD, SERVM, MECORE (BC 
Hydro)

Data Needs
System topology, understanding of 

contingency are criticality
 (i.e., power flow results)

Load & renewable profiles under different 
weather patterns, historical outage patterns

Load, wind and solar profiles under 
different weather patterns

Existing Case Studies or 
Applications

Many RTOs
Common industry practice to assess expected 

value of a variable
TVA SERVM/TransCare Case Study

ERCOT, BC Hydro

Explored in 
More Detail

Probabilistic Deterministic Case Study
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Outage and Contingency
SERVM + TransCARE Linkage Demonstration

Approach:

 A combined generation and transmission adequacy modeling approach was assessed which included full simulations in SERVM and a smaller subset of 
representative snapshots to be run in a full AC power flow model in TransCARE

• TransCARE is a transmission reliability tool that utilizes state-space (Markov) approach in computing bulk power system reliability.  The tool uses fast decoupled AC power flow 
and takes post contingency corrective actions to alleviate system problems

• SERVM is a hybrid resource adequacy and production cost model that stochastically simulates unit performance, weather conditions, resource outages and other stochastic 
variables.  SERVM can also evaluate trade-off between reliability and costs of unserved energy

 To create the linkage SERVM was modified to accept files in PSS/E RAW format and tables were created which allowed system topology (generators, regions and 
transmission component) matching between the PSS/E model and SERVM

• SERVM was also modified to output information to the RAW file for input into TransCARE, which was specific to the snapshot.  This included generation output and economic 
commitment and dispatch.  

 SERVM uses Monte Carlo to calculate likelihood of generator availability, so this logic was extended to transmission components to develop contingency files.  

• The model was used to generate several thousand iterations of generation and transmission components outages which were written to the contingency files

• Iterations with identical outages were consolidated and the probabilities were calculated.  For example, a combination of outages that occurred in 20 out of 5,000 iterations 
would have a probability of 0.4%

Outcomes:
 The method allowed users to test any number of snapshots based on specified criteria.  High load, low load, high renewable output or economic criteria could be used 

to select the specific snapshots
 The approach was tested on a simple test system while considering a wide range of weather, load, etc. without running billions of full AC power flow models.  
 The approach proved that the two tools could be linked to combine assessment techniques
 Results from the test case were not fully scalable to larger systems, but revealed strengths from combining generation adequacy and transmission adequacy 

modelling

Production Cost/Power Flow Modeling

Sources: EISPC Study on Probabilistic Risk Assessment for Transmission
EIPSC Whitepaper on the Incorporation of Risk Analysis into Planning Processes

https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
https://www.astrape.com/wp-content/uploads/2024/01/EISPC_RiskBasedPlan_WhitePaper_FINAL_01312015_EPRI-.pdf
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Outage and Contingency
Case Study: TVA SERVM + TransCARE Linkage

SERVM + TransCARE  ProcessApproach:

 A combined generation and transmission adequacy modeling approach was explored 
which allowed for full simulations in SERVM and subsequently selecting a smaller set of 
representative snapshots to be run in TransCARE

 To bridge the gaps between model assumptions, 20 snapshots from millions of SERVM 
hourly scenarios were selected to put through TransCARE. 

• The selection process was manual. SERVM was modified to accept files in PSS/E RAW format, and 
SERVM commitment & dispatch were transferred into, and run through TransCARE

 Outage data need be supplied for only the components in the study area of interest and 
included annual failure frequency, outage duration and forced outage rate

 For each snapshot SERVM, using Monte Carlo, developed 3,000 distinct contingencies  
(limit of 9 generators and Tx components) which were then simulated in TransCARE

Source: EISPC Incorporation of Risk Analysis into Planning Processes

Key Outcomes:

 LOLE results from the linkage run were similar to separate runs ( SERVM and TransCARE) and the Tx lines could not be justified on the 
economic or reliability front

 Across all runs there were 20,000 contingencies that posed system problems, while 2000 of those resulted in loss of load.  

 Many of the contingencies could not be solved without manual intervention in the TransCARE environments 

Production Cost/Power Flow Modeling
PCM/PFM Linkage & Monte Carlo

https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
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Outage and Contingency
Case Study: TVA Economic Model Monte Carlo + SERVM

Cumulative Outage Distribution

Distribution of Production Cost Savings

 Approach:
• SERVM used multi-state Monte Carlo simulations to model generator outages 

over 8760 hours/year:
• Full and partial generator outages were modeled based on historical rates 

(forced outages, maintenance, and startup failures)
• For each year, 10 different outage scenarios were simulated across 2,970 

iterations, combining weather, load growth, and fuel price variations
• In each simulation, units failed stochastically. The first chart shows that 90% of 

the time TVA has less than 2.9GW offline due to forced outage. 

 Key Outcomes:
• Economic Benefits: Probability-weighted cost savings varied from median 

estimates. The most cost savings happen in rare events (including severe outage 
scenarios)
– In the second graph, "probability-weighted" ($40M) averages all outcomes by their likelihood, unlike 

the median ($32M), which shows only the midpoint

• LOLE and EUE did not show significant improvements. 
• SEVRM reliability targets did not include transmission outages, and generation 

was assumed to be delivered within TVA region.

Tie-line additions between TVA and AECI (+1,000 MW ATC) and another 
between TVA and PJM (increasing import capacity by 1,000 MW and export 

capacity by 2,000 MW).

Cumulative distribution of outages from each of 2,970 iterations

Source: EISPC Incorporation of Risk Analysis into Planning Processes

Production Cost Modeling
Monte Carlo

https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
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Outage and Contingency
Case Study: TVA SERVM + TransCARE Tie-Line Assessment

SERVM + TransCARE  Process
Approach:

 A combined generation and transmission adequacy modeling approach was explored which allowed for full 
simulations in SERVM and subsequently selecting a smaller set of representative snapshots to be run in 
TransCARE.  The reliability used the System Problem Approach and the Capability Approach
• System Problem Approach – A pessimistic approach that provides frequency, duration and severity indices of system 

problems but does not consider corrective actions by system response or operator actions

• Capability Approach – Estimates the amount of EUE if problems persist after remedial actions.  Provides a single set of 
load-loss indices as a measure of unreliability.  Includes probability, frequency and duration of load loss at each point

 The analysis involved evaluating the economic and reliability impact of building two tie-lines1.  Each were 
considered separately as separate case studies which were structured with three tasks:
• Transmission reliability assessment using TransCARE
• Generation adequacy assessment and probabilistic economic analysis using SERVM
• Combined analysis using both tools to assess contribution to EUE due to transmission constraints

 Prior to the TransCARE analysis TVA performed deterministic N-1 and N-2 outages and found no significant 
reliability benefit.  TVA planners sought to understand if different conclusion could be reached using probabilistic 
analysis

 TransCARE n-2 analysis was performed for circuits and generators across two zones in the TVA control area, 
chosen for the study area.  
• Outage generation statistics from NERC’s GADS and TADS were used for each component
• The study utilized three 2016 Peak load cases, one for the existing TVA system, one with the 765kV line and one with 

the 500kV line

Key Outcomes:
 System Problem Approach – Indices from the base case were not improved by the addition of either line, so reliability 

benefit could not justify the projects
 Capability Approach – Load loss indices aligned with the conclusions from the voltage and thermal violations that the lines 

would not provide a reliability benefit

Source: EISPC Incorporation of Risk Analysis into Planning Processes1 – 765kV between TVA and AEP and a 500kV between TVA and AECI

Production Cost Modeling
Monte Carlo

https://pubs.naruc.org/pub.cfm?id=536DCE1C-2354-D714-5175-E568355752DD&_gl=1*lfvbs2*_ga*MTU2OTk4NzMuMTczMDMwNTU3NA..*_ga_QLH1N3Q1NF*MTczMDMwNTU3My4xLjAuMTczMDMwNTU3My4wLjAuMA..
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Economic Cost of Uncertainty
Case Study: ERCOT PRA Framework

Production Cost Modeling
Economic Cost of Uncertainty

Approach:

 Scenario Selection: Conducted 8760-hour production cost simulations using the UPLAN 
tool across four historical weather patterns to generate 35,040 scenarios. Applied Monte 
Carlo sampling with K-means clustering, selecting eight clusters based on the Elbow 
method1. Two samples per cluster were chosen to adequately represent the state space.

 Reliability Analysis: Developed eight base cases, performing reliability assessments for 
342 extreme events using POM-OPM and Power World  software for the power flow 
analysis. Outage probabilities were calculated from NERC TADS and GADS data, assuming 
independent outages.

 Risk Metrics: Based on the reliability analysis, calculated  the Expected Unserved Energy 
(EUE).   

𝑰𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒂𝒍 𝑹𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝑰𝒏𝒅𝒆𝒙 (𝑰𝑹𝑰) =
𝑬𝑼𝑬𝒃𝒆𝒇𝒐𝒓𝒆 𝒑𝒓𝒐𝒋𝒆𝒄𝒕  − 𝑬𝑼𝑬𝒂𝒇𝒕𝒆𝒓 𝒑𝒓𝒐𝒋𝒆𝒄𝒕

𝑪𝒂𝒑𝒊𝒕𝒂𝒍 𝒄𝒐𝒔𝒕 𝒐𝒇 𝒑𝒓𝒐𝒋𝒆𝒄𝒕 ($)

Key Outcomes: 

 The EUE metric demonstrated that Project A provided the greatest reliability improvement. 
The IRI metric indicated that Project A offered the best reliability enhancement per million 
dollars invested, supporting it as the most effective option among the alternatives

Expected Unserved EnergyThe ERCOT case study applied a Probabilistic Reliability Assessment (PRA) 
framework to evaluate three fictional transmission investments using both production 

cost and power flow analysis

Incremental Reliability Index

Source: An Approach for Probabilistic Composite Power System 
Transmission Planning - ERCOT

1 -  The elbow method finds the optimal k by identifying where adding 
clusters no longer significantly reduces clustering error

https://ieeexplore.ieee.org/document/9281453
https://ieeexplore.ieee.org/document/9281453
https://ieeexplore.ieee.org/document/9281453
https://ieeexplore.ieee.org/document/9281453
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Approach:

 Five Central Vancouver Island transmission reinforcement alternatives were 
considered

 BC Hydro used their internally developed MECORE and PLOSS software
• Analysis was performed over a 10-year period using full duration curves
• Annual Expected Energy Not Served (EENS) and peak load transmission 

losses were computed for each alternative

 Costs were assigned to Reduced EENS and Reduced Losses
• Interruption Cost = $9,040/MWh ; Transmission Loss Cost = $88/MWh

Key Outcomes:

 A Benefit/Cost ratio was computed for each alternative

 The economic benefits from reduced EENS outweighed the economic benefit 
from reduced transmission losses
• All alternatives were economically viable, with cost-benefit ratios from 6 to 

14.
• The most cost-effective option was the 230 kV injection.

Metrics for Evaluating Tx Investment Options The study objective was to measure the reliability improvement and 
transmission loss reduction of several transmission alternatives to supply the 

Central Vancouver Island, along with a cost/benefit analysis for each alternative

Economic Cost of Uncertainty
Case Study: BC Hydro Vancouver Island Reinforcement

Source: ISONE Review of Tx PRA Assessments

BC Hydro concluded that the selection of the “best” alternative 
depended on the metric being used: 

Project cost, reduced EENS, reduced transmission losses or total 
benefit/cost ratio

Production Cost Modeling
Economic Cost of Uncertainty

https://www.iso-ne.com/static-assets/documents/2016/02/a6_review_of_transmission_planning_assumptions_probabilistic_transmission_assessment_and_tools.pdf
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Production Cost

Source of 
Uncertainty Details Representative Weather 

Year Monte Carlo Stochastic Load & 
Renewable Production

Statistical Weather 
Prediction

Weather Related Variability

Extreme 
Weather Events
& 
Renewable 
Output

Technique Deterministic Probabilistic Probabilistic Deterministic or Probabilistic

Overview of Method

Evaluating the system’s 
performance over a complete and 

contiguous weather dataset.  A 
sample weather year with 

correlated load and generation is 
selected and evaluated across a 

full year or set of years. 

Randomly selected draws 
using probability distributions 

for load and renewable 
generation based on historical 

patterns

Seasonal variation in generation 
(or load) is aggregated into a 

profile detailing generation as a 
function of probability of 

occurrence. Refers to a wide range 
of methods to quantify the 

variability of load and resource 
production in response to weather 

conditions.  

Simple methods such as Measure 
Correlate-Predict (MCP) are used for 

filling gaps in location specific load and 
resource generation data.  Extremely 

complex Numerical Weather Prediction 
(NWP) and Global Climate (GCM) 

models are to mathematically describe 
atmospheric processes

Workflow

Comprehensive weather impacts 
to load and generation can be 

evaluated by selecting or 
constructing representative 

weather years.

Yields aggregated power 
system impacts by assessing 

weather variability impacts on 
many constituent parts.

Historical data is used to build 
probability distributions that can 

be assessed in many ways to yield 
a quantification of weather-

related variability across a wide 
set of weather conditions.

Correlations between existing 
measurements at a renewable resource 

site and a nearby site with a complete 
dataset are established through 

statistical models such as linear or 
moving average.

Models Used
PLEXOS, ENELYTX PSO, PROMOD, 

many commercially available 
tools

PLEXOS, ENELYTX PSO, 
PROMOD, many commercially 

available tools

Out-of-model pre-processing step 
which relies on statistical 

methods, typically Monte Carlo.  

MCP (common statistical models)
NWP (NOAA, NCEP)

Data Needs Complete weather year and 
correlated load/generation

Probability distributions for 
load and renewable 

generation

Historical load and renewable 
generation data

Ranges from site specific to highly 
detailed observations across many 

stations

Existing Case Studies 
or Applications

Industry standard modeling 
practice

Common industry practice to 
assess expected value of a 

variable

NREL Evaluation of Xcel Energy’s 
2030 Colorado Preferred Plan

MCP commonly used in wind site 
assessment.  NWP used for weather 

forecasting and climate change

Addressing Uncertainty within Production Cost
Weather Related Variability

Explored in 
More Detail

Probabilistic Deterministic Case Study
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Weather Related Variability
Stochastic Load and Renewable Production

Solar Irradiance Probability Distribution

Stochastic load and renewable production is a key input in 
evaluating weather variability in power flow modeling, production 

cost modeling, and capacity expansion planning

Method Overview:

 Refers to a wide range of methods to quantify the variability of load and resource production in 
response to weather conditions

• Most common (and well established) is Monte Carlo

 Historical data is used to develop a generation or load profile as a function of probability of occurrence

• It is important to ensure correlated weather year data is used across all weather-dependent technology 
and load models and any temperature dependent data

• Can also create probability profiles for generation proxies, such as wind speed data or solar irradiance

 Distributions can be used to quantify expected generation during specific events or over a long-
term average

Inputs and Tools: 

 Historical time series data of load and renewable generation as a function of weather conditions

 Fundamental statistics-based correlation methods such as regressions and moving averages

Key Takeaways:

 Probability distributions serve as a foundation for probabilistic analysis of weather variability

 Used in other methods such as Monte Carlo simulations, CLLs, and C-PAGE

Production Cost Modeling

https://pubs.naruc.org/pub/536DCF19-2354-D714-5117-47F9BA06F062?_gl=1*117aao*_ga*ODQ0ODU3MDYzLjE3MjU5OTY5NzU.*_ga_QLH1N3Q1NF*MTcyOTg5MTI3Mi40LjAuMTcyOTg5MTI3Mi4wLjAuMA..
https://www.mdpi.com/2071-1050/12/6/2241
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Weather Related Variability
Case Study: NREL Weather Analysis

Approach:

 NREL evaluated the resiliency of Xcel Energy’s 2030 Colorado Preferred Plan using 
stochastic and deterministic methods

• Renewable generation and load are quantified using probability profiles based on historical 
data

• Resiliency evaluated by “stress testing” the system with extreme events

• Production cost modeling used to evaluate dispatch results

 The impact of extreme events on load and generation was evaluated by identifying historical 
events within probability profiles

• Performed by “placing” the applicable extreme event on the load/generation profile to identify 
the deviation from standard output driven by extreme weather conditions

• The identified extreme event effect is applied to the future resource plan and locations to 
assess the impact on a future grid

• Allows for identification of which events are most valuable to evaluate

Key Outcomes:

 Findings suggest that peak load periods are not the most concerning period anymore. 
Near-peak load periods with low wind generation output in the evening lead to very 
narrow but high net load peaks

 Demonstrated the ability of stochastic load and resource production to effectively evaluate 
reliability outcomes

Probability Density of PSCo Highest Load On Record

Sources: NREL Weather Analysis for Xcel Energy’s 2030 Colorado Preferred Plan

Wind, solar PV, load, and net load in PSCo during the highest load in the record

Production Cost Modeling
Stochastic Load & Renewable Production

https://www.nrel.gov/docs/fy24osti/79812.pdf
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Addressing Uncertainty within Production Cost
Future Uncertainty

T Production Cost

Source of Uncertainty Details Scenario Analysis Stochastic Portfolio Risk Evaluation

Future Uncertainty

Future Clean Energy 
Policy
&
Climate Change

Technique Deterministic Probabilistic

Overview of Method

Industry standard approach used by system planners to 
evaluate system economics while capturing uncertainty in 
future loads and resource portfolios. Planners develop of 

deterministic future scenarios using engineering and 
stakeholder judgement to capture long-term uncertainties.

Scenarios are optimized deterministically and evaluated 
post-optimization among a wide variety of alternate futures.  
Using probabilistic post-model risk analysis, planners can 

evaluate the likelihood or impact of a selected scenario 
across a range of scenarios being evaluated.

Workflow
Involves identifying key inputs to vary across scenarios. 

Modeling is performed across scenarios to determine the 
impact of the defined inputs.

This class of methods accounts for uncertainty by 
considering a range of possible futures and their associated 

probability of occurring, as opposed to a single Scenario. 
Primary probabilistic analysis methods are Monte Carlo 

sampling and probability trees, which are both well 
understood and documented process. 

Involves identifying targeted risk metrics, selecting inputs, 
and developing probability distributions for inputs. Monte 

Carlo simulations are used to evaluate performance.

Models Used

Scenarios developed by experienced system planners and 
informed by stakeholder input.  Scenarios are evaluated 
using many commercially available PCM tools such as 

PLEXOS, MIDAS, PROMOD, among others.

Out-of-model post-processing step.  Leverages probability 
trees or Monte Carlo sampling. 

Data Needs Portfolio options, policy, system topology, weather 
correlated loads and generation, load growth, etc.

Defined set of alternate futures and probabilities of 
outcome

Existing Case Studies or 
Applications

Typical industry practice for evaluating long-term 
uncertainty.  Used to develop MISO Futures TVA 2019 IRP

Explored in 
More Detail

Probabilistic Deterministic Case Study
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Future Uncertainty
Stochastic Portfolio Risk Evaluation

Method Overview:

 Stochastic Portfolio Risk Evaluation accounts for uncertainty by 
considering a range of possible futures and their associated probability of 
occurring, as opposed to a single Scenario

• Monte Carlo analysis and Probability Trees are common frameworks for 
Stochastic Portfolio Analysis

 Portfolio Risk Evaluation is unique because the approach can quantify the 
distributions of total system costs and environmental outcomes for each 
future

 This method is commonly used by system planners to evaluate risks under 
each future portfolio

• A 2024 EPRI Study evaluated how Idaho Power, CEI South, PacifiCorp, TVA 
and AES Indiana were implementing this framework

Inputs and Tools:

 Monte Carlo analysis is most commonly used for stochastic risk analysis 
(included in commercial software such as PLEXOS and Aurora)

 Inputs include portfolio options, key decision variables, and stochastic 
variables with applicable distributions

Key Takeaways:

 Stochastic portfolio risk evaluation is a feasible method to improve the 
performance of scenario analysis in addressing uncertainties

Deterministic and Stochastic Portfolio Analysis

Probability distributions of system costs for each future scenario allow 
system planners to quantify their relative risks

Sources: EPRI Stochastic Modeling Practices for Integrated Resource Planning

Production Cost Modeling

https://www.epri.com/research/programs/069228/results/3002030746
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Future Uncertainty
Stochastic Portfolio Risk Evaluation – Probability Trees

Method Overview:

 Probability trees entail the explicit enumeration of a combination of discrete 
events and their conditional probabilities

• Allows for the determination of the probability of each combination of outcomes

  Enhances scenario modeling by assigning conditional probabilities to each 
scenario

• This allows for more quantitative analysis of scenario modeling results

 Ameren Missouri uses probability trees in their IRP process to assign weighting 
factors to different combinations of inputs

• Evaluated 23 different resource plans through a probability tree with 81 total 
branches to determine the lowest probability-weighted revenue requirement

Inputs and Tools:

 Dependent inputs are carbon prices, load growth, and natural gas prices

 Requires assigning probabilities to each input branch

Key Takeaways:

 Used to inform portfolio selection by weighting scenario importance

 Provides a more robust analysis of portfolio performance across futures

 Dependent on judgement-based determinations of input probabilities

Probability Trees

Scenarios with probability-dependent inputs can be enumerated in a 
probability tree to quantify the expected probability of combination 
outcomes, useful for enhanced risk analysis of scenario modeling. 

Sources: EPRI Stochastic Modeling Practices for Integrated Resource Planning ; Ameren Missouri IRP

Production Cost Modeling

https://www.epri.com/research/programs/069228/results/3002030746
https://www.ameren.com/missouri/company/environment-and-sustainability/integrated-resource-plan
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Future Uncertainty
Stochastic Portfolio Risk Evaluation – Monte Carlo Analysis

Method Overview:

 Requires the identification of key risk variables and the development of 
probability distributions for each variable

• Key risk variables include load growth, natural gas price, and carbon prices

• Probability distributions determined by collecting historical data and fitting it 
with the most applicable distribution

 Analysis can be enhanced by correlating values between relevant inputs (such as 
natural gas prices and electricity prices)

 Repeated random sampling is used to create sets of inputs to the production cost 
model

 Visualizations and identified risk metrics (such as risk/benefit ratio or standard 
deviation of cost) are used to analyze results

Inputs and Tools:

 Inputs include historical data for stochastic inputs and portfolio decision options

 Commercial tools are used to simulate dispatch of portfolios with stochastic 
inputs such as PLEXOS and EnCompass

Key Takeaways:

 Results interpretation and visualization is a key step to inform decision-making 
that is often under-performed

 Widely accessible approach with limited effort, model, and data requirements to 
substantially improve the robustness of portfolio planning

Monte Carlo Analysis

Idaho Power performed stochastic analysis as a part of their 2023 
Integrated Resource Plan using 4 different risk variables and 60 Monte 

Carlo samples 

Sources: EPRI Stochastic Modeling Practices for Integrated Resource Planning

Production Cost Modeling

https://www.epri.com/research/programs/069228/results/3002030746
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Future Uncertainty
Case Study: TVA 2019 IRP

Approach:

 TVA’s 2019 IRP employed industry leading stochastic portfolio risk 
evaluations

• Analyzed 30 different deterministically optimized portfolios – a product of 
6 different futures scenarios with 5 different strategies

• Evaluated 8 different risk metrics as a function of 11 different stochastic 
inputs

• NREL’s Multi-Timescale Integrated Dynamic and Scheduling (MIDAS) was 
used to perform hourly dispatch over the 20-year planning horizon for each 
portfolio

 Included extensive stakeholder engagement to identify risk metrics, 
stochastic inputs, and portfolio sensitivities

Key Outcomes:

 Stochastic evaluations informed an integrated, least cost 
recommended plan

 Included signposts guiding decisions in the long-term, such as 
natural gas prices, electricity demand, and regulatory requirements

 Demonstrated that stochastic portfolio risk assessment is an 
excellent opportunity for stakeholder engagement

TVA 2019 IRP Results

Stochastic Inputs Risk Metrics
Natural gas prices Fuel oil price Water use

System load Carbon price Total CO2 emissions
Electricity prices Technology costs Total resource cost
Forced Outages Wind & Solar generation System average cost

Hydroelectric generation Coal Prices PVRR
Risk benefit ratio

Risk exposure
CO2 intensity

Source: TVA 2019 IRP

Range of capacity additions and retirements

Production Cost Modeling
Stochastic Portfolio Risk Evaluation

https://tva-azr-eastus-cdn-ep-tvawcm-prd.azureedge.net/cdn-tvawcma/docs/default-source/default-document-library/site-content/environment/environmental-stewardship/irp/2019-documents/tva-2019-integrated-resource-plan-volume-i-final-resource-plan.pdf
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Capacity Expansion

Source of Uncertainty Details Scenario Analysis
Stochastic Programming

(JHSMINE & ACEP)

Future Uncertainty

Future Clean Energy 
Policy
&
Climate Change

Technique Deterministic Probabilistic

Overview of Method

Industry standard approach used by system planners to 
evaluate system economics while capturing uncertainty in 
future loads and resource portfolios. Planners develop of 

deterministic future scenarios using engineering and 
stakeholder judgement to capture long-term uncertainties.

Approach which is used to stochastically evaluate 
transmission planning investments across multiple futures 
and identify generation and transmission expansions while 

minimizing the cost of adapting to each future. Method is 
considered primarily academic with no industry adoption to 

date.

Workflow
Involves identifying key inputs to vary across scenarios. 

Modeling is performed across scenarios to determine the 
impact of the defined inputs.

JHSMINE uses a decision-tree logic where investment costs 
are assigned to initial strategies, and decisions are made on 

decision nodes with assigned probabilities.  ACEP is a similar 
approach, but key differences are a network reduction step to 
improve computational requirements and a single investment 

trajectory through time, rather than a branched approach

Models Used

Scenarios developed by experienced system planners and 
informed by stakeholder input.  Scenarios are evaluated using 

many commercially available PCM tools such as PLEXOS, 
MIDAS, PROMOD, among others.

JSHMINE, ACEP

Data Needs Portfolio options, policy, system topology, weather correlated 
loads and generation, load growth, etc. Portfolio options and system topology, and probabilities

Existing Case Studies 
or Applications

Typical industry practice for evaluating long-term uncertainty. BPA/WECC and MISO Case Studies

Addressing Uncertainty within Capacity Expansion
Future Uncertainty

Explored in 
More Detail

Probabilistic Deterministic Case Study
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Future Uncertainty
Stochastic Programming - JHSMINE

Two-Stage Optimization Decision Tree

Sources: JHU WECC Planning for Uncertainty

Stochastic programming is an effective method to 
prioritize the selection and timing of transmission 
investments when choosing from a defined set of 

options

Method Overview:

 Johns Hopkins’ Stochastic Multi-Stage Integrated Network Expansion (JHSMINE) approach developed by Ben 
Hobbs which is used to stochastically evaluate transmission planning investments

• Evaluates transmission investments across a stochastic set of assumptions to identify best-choice investments under a 
wide range of possible scenarios

• Two-stage optimization separating optimal investments into near-term and long-term decisions, accounting for the 
system’s ability to adapt to changes

 Defines up to 25 scenarios based on probabilistic inputs of key uncertain variables such as gas price, load growth, 
technology prices, policy decisions, and more

• Scenarios are given composite probabilities based on inputs of the uncertain variables and the applicable standard 
deviations, means, and correlations of the variable

 Performs multi-stage linear optimization to minimize the present value of investments and costs over the near and 
long-term horizon

• Objective function: 𝑀𝑖𝑛( 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑊𝑜𝑟𝑡ℎ 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 & 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 + 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠)

Inputs and Tools: 

 Defined transmission investment candidates in the near-term and long-term, system topology, existing generation 
information, renewable profiles, generation investment information, stochastic input variables

 Johns Hopkins Stochastic Multi-stage Integrated Network Expansion (JHSMINE)

Key Takeaways:

 Stochastic transmission planning yields significantly lower expected costs than deterministic planning

 Stochastic planning justifies more transmission investment than deterministic

 Method is considered primarily academic – no industry adoption to date

Capacity Expansion Modeling

Stage 2024: Stage 2034:

https://www.ethree.com/wp-content/uploads/2017/02/Planning-for-Uncertainty-Final-Report.pdf
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Future Uncertainty
Stochastic Programming – ACEP

ACEP Investment Trajectory

Sources: ISU Adaptive Cooptimized Expansion Planning

Method minimizes the Investment Cost (C) + Prob * 
Cost of Adaptation (A), while providing a single, 
adaptable investment trajectory through time

Method Overview:
 Adaptive Co-optimized Expansion Planning (ACEP) formulation, developed by James McCalley at Iowa State 

University is not a traditional stochastic programming model, instead the method provides a single investment 
trajectory through time, rather than a branched approach.
• Used a stochastic programming approach like JHSMINE, however the key difference is the additional dimension of model 

reduction to improve the computational requirements
• Key similarity with JHSMINE is that the model aims to provide a hedge against uncertainty which is often not captured in 

deterministic models. ACEP seeks to estimate the costs across multiple futures and identify generation and transmission 
expansions while minimizing the cost of adapting to each future

 Method is a co-optimized generation and transmission expansion planning approach which aims to minimize the 
cost of the Core (denoted by C) investment trajectory subject to constraints.  The model provides a singles 
investment trajectory through time (red).
•  Objective function: 𝑀𝑖𝑛( 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑟𝑒 + 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑢𝑡𝑢𝑟𝑒 𝑥 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐴𝑑𝑎𝑝𝑡𝑖𝑛𝑔 𝐶𝑜𝑟𝑒 𝑡𝑜 𝐹𝑢𝑡𝑢𝑟𝑒)

• Constraints for each future include: network flow laws, flow limits, generation limits, reserve requirements, environmental 
targets, investment targets and resource adequacy targets.

 Model Steps include:
1. Network reduction steps which can simplify a 90,000-bus system to 1,500 or less busses. This is an important tradeoff to 

make on high dimensional models when considering computational requirements.
2. Adaptive Capacity Expansion Plan (CEP) and Resilience CEP are evaluated followed by a folding horizon simulation to 

check the answers of the optimizers.  This is an iterative process to ensure that the capacity expansion plan meets 
resilience requirements.  This is an iterative process between the CEP optimizer and the reserve margin/LOLE calculation.  

– GE-MARS is used for LOLE evaluation, then iterations are made to adjust the planning reserve margin back into the AECP model
3. Following the optimization stage, the results of the reduced model are translated back to the full (90k) bus system

Key Takeaways:
 Addresses linkages between planning models while also capturing uncertainty and minimizing investment costs
 Adaptation investments provide insight into future investments – indicates to planners which investment options are 

riskier compared to core investments. 
 Provides a flexible investment plan – each core investment portfolio can be adapted to each future scenario via the 

adaptive investments
 Method is considered primarily academic – no industry adoption to date

Capacity Expansion Modeling

https://cdn.misoenergy.org/20241119%20Probabilistic%20Planning%20Symposium%20Item%2005%20Emerging%20Trends%20for%20Probabilistic%20Long-Term%20Planning_James%20McCalley661591.pdf


61

Future Uncertainty
Case Study: WECC Expansion Demonstration

Stochastic Programming Results Comparison

Identified transmission investments yield $11.66 billion in expected 
savings over the 50-year analysis time horizon

Approach:

 Demonstrated stochastic programming using JHSMINE on two simplified WECC models

• Zonal Model: 21 zones, pipes-and-bubbles load flow

• Nodal Model: 300 buses, enforces basic voltage physics

 Included 18 different stochastic variables for fuel & carbon prices, capital cost for 
technologies, and electricity demand

 Assessed 20 different scenarios representing plausible combinations of the stochastic 
variables, including 9 scenarios identified by a stakeholder group

 Incorporated climate change impacts to hydropower production

Key Outcomes:

 Stochastic programming outcome justifies more investment in transmission

• Despite more spending on transmission, the stochastic outcome yields $11.66 billion in 
expected savings over a 50-year time horizon

• Stochastic outcome performed materially better across different scenario results, 
demonstrating a more robust solution

 Realistic additions to the production cost elements of JHSMINE (such as unit 
commitment constraints) can have a material effect on planning outcomes, depending 
on scenario carbon prices

Deterministic Stochastic

Changes 
between cases

Sources: JHU WECC Planning for Uncertainty

Capacity Expansion Modeling
Stochastic Programming

https://www.ethree.com/wp-content/uploads/2017/02/Planning-for-Uncertainty-Final-Report.pdf
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Other Modeling Frameworks

Source of 
Uncertainty Details Forecasted Climate Impacts Robust and Adaptive Planning Risk-Based Planning with Climate 

Variability

Future Uncertainty

Future Clean 
Energy Policy
&
Climate Change

Technique Deterministic Hybrid Hybrid

Overview of 
Method

Accounting for the forecasted impact of climate 
change on electric power system assets.

Uncertainty and risks management methodology 
employed out-of-model to improve long-term 

planning. 
Strategies to adapt decision-making to ensure 

least regrets investments and manage risks 
under long-term uncertainty.

Involves assessing climate risk at the asset 
level and incorporating mitigation measures to 

reduce the threat of climate change.  Can be 
used to quantify asset-level climate risks for 

planning purposes

Workflow

Methods such as downscaled climate model 
projections, adjusted weather year weighting, 
and trends in forecasts to account for climate 

impacts. Climate impacts can be incorporated 
into model weather years through several 

methods.  Numerical Weather Prediction (NWP) 
and Global Climate Change (GCM) are the most 

promising but require forecasts from national 
forecast centers such as NOAA or NCEP in the 

US.

Involves a vulnerability assessment to identify 
uncertainties that pose the highest risk and a 

monitoring plan to identify new information 
regarding key uncertainties.  Signposts establish 
thresholds for monitored variables which trigger 
re-evaluation.  A probabilistic extension of this 

framework uses sequential Monte Carlo analysis 
to extend the sampling strategies. 

Data and effort-intensive process that 
requires asset-level understanding on climate 
exposure, risks, and impacts.  Steps include: 

determining the exposure of assets to a 
climate event, evaluating the probability of 

damage to assets due to exposure, assessing 
the consequences of damage to assets and 
establishing mitigation measures to reduce 

the consequences.

Models Used NWP and GCM Climate Models.  ML seeing 
increased applications Robust and Adaptive Planning Framework PNNL & DOE Developed Best Practices

Data Needs Historical and Recent Weather Data Identification of key risk factors Detailed climate data, extensive 
understanding of system risks

Existing Case 
Studies or 
Applications

Con Edison Climate Vulnerability Assessment Con Edison Climate Vulnerability Assessment Con Edison Climate Vulnerability Assessment

Addressing Uncertainty within Other Frameworks
Future Uncertainty

Explored in 
More Detail

Probabilistic Deterministic Case Study
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Future Uncertainty
Robust and Adaptive Planning

Method Overview:

 Robustness refers to the ability of a selected outcome to perform well across a range of 
plausible future scenarios

• Involves identifying performance measures to evaluate the effectiveness of decision 
options

• Requires performing a vulnerability assessment to identify uncertainties that pose the 
highest risk

 Adaptive Planning is designed to be continuously updated over long-time horizons in 
response to new information on uncertainties

• Requires a monitoring plan to identify new information regarding key uncertainties

• Uses signposts to establish thresholds for monitored variables that trigger action 
processes

 An extension of this framework has been proposed called the Robust Adaptive Monte 
Carlo Planning (RAMCP) algorithm

• Existing work focused on planning over a discrete distribution across models, but 
extended sampling strategies such as sequential Monte Carlo has been proposed

Inputs and Tools:

 Requires identified decision options and key risk variables

Key Takeaways:

 Adaptive planning approaches are growing in popularity as a no-regrets method to deal 
with decision making under long-term uncertainty

 Many different probabilistic and hybrid planning approaches can improve the robustness 
of planning decisions

Con Edison’s Adaptive Signpost Approach

Con Edison established a monitoring plan for key risk variables with 
signposts to trigger management processes in their 2023 Climate 

Vulnerability Plan

Sources: Climate-aware decision-making ; Con Edison Climate Vulnerability Plan; Robust and Adaptive Planning Under Model Uncertainty

Robust and adaptive planning is an uncertainty and risk 
management methodology employed out of model to improve 

long-term planning practices and outcomes

Other Modeling Frameworks

https://iopscience.iop.org/article/10.1088/1748-9326/ac7815/pdf
https://iopscience.iop.org/article/10.1088/1748-9326/ac7815/pdf
https://iopscience.iop.org/article/10.1088/1748-9326/ac7815/pdf
https://iopscience.iop.org/article/10.1088/1748-9326/ac7815/pdf
https://iopscience.iop.org/article/10.1088/1748-9326/ac7815/pdf
https://www.coned.com/-/media/files/coned/documents/our-energy-future/our-energy-projects/climate-change-resiliency-plan/climate-change-vulnerability-study.pdf
https://arxiv.org/pdf/1901.02577
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ConEdison Vulnerability Framework

Lo
w • Asset/system has low vulnerability to the given climate hazard

• Minimal or no negative outcomes

Se
co

nd
ar

y

• Asset/system is moderately vulnerable to the given climate hazard
• Exposed to increased degradation over time
• Moderately sensitive / limited increase in magnitude

Pr
im

ar
y

• Asset/system is highly vulnerable given the climate hazard
• High risk of major failure/ increase in magnitude is high

Future Uncertainty
Case Study: Con Edison Climate Change Assessment

Approach:

 Case study illustrates the application of both Risk-Based Planning and Robust and 
Adaptive Planning methods

• Evaluated climate risks including increased temperature and humidity, flooding, wind and 
ice, and extreme events

 Used a qualitative vulnerability assessment to determine climate risk to specific assets 
from climate impacts

 Incorporated signposts for adaptive decision making in response to changing climate 
conditions

Key Outcomes:

 Con Edison’s 2019 climate vulnerability assessment combined several methods for 
dealing with uncertainty to deliver the “gold standard” of climate vulnerability studies

 Established a structure for continuous risk assessment and identified $5.2 billion in 
potential improvements

Con Edison’s Climate Vulnerability Strategy

Sources: Con Edison Climate Vulnerability Plan

Identified up to $5.2 billion in asset investments by 2030 to improve 
resilience such as undergrounding of lines, installing stronger 

poles, and expanding monitoring capabilities

Other Modeling Frameworks
Robust & Adaptive Planning

https://www.coned.com/-/media/files/coned/documents/our-energy-future/our-energy-projects/climate-change-resiliency-plan/climate-change-vulnerability-study.pdf
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Future Uncertainty
Risk-Based Planning with Climate Variability

Method Overview:

 Risk-based planning with climate variability involves assessing climate risk at 
the asset level and incorporating mitigation measures to reduce the threat of 
climate change

 Required steps:

1. Determining the exposure of assets to a climate event

2. Evaluating the probability of damage to assets due to exposure

3. Assessing the consequences of damage to assets

4. Establishing mitigation measures to reduce the consequences

 Approaches for calculating probability of damage to assets vary in method, depth 
of analysis, and quantitative complexity

Inputs and Tools:

 Data and effort-intensive process that requires asset-level understanding on climate 
exposure, risks, and impacts

 Utility asset risk assessment frameworks can be adapted to incorporate climate risks

Key Takeaways:

 Asset level planning is a data and effort-intensive process that yields robust 
climate risk reductions

 Required effort can be reduced by implementing simplified versions of asset level 
planning, such as updating equipment outage rates due to heat exposure for 
climate impacts

Sample Mitigation Measure Description

Undergrounding and Relocation
Undergrounding and relocating assets (such as 

out of flood zones or to avoid sea level rise)

Grid hardening and updating 
equipment

Upgrading or replacing critical equipment to 
higher design standards such as broader 

temperature ratings

Vegetation Management
Mitigating wildfire risk through trimming and 

removal of vegetation around utility infrastructure

Emergency Trainings
Trainings to promote effective response to 

emergency situations and hazard conditions

Source: Emerging best practices for electric utility planning with climate variability

Qualitative assessments of exposure, probability, and consequences are 
often used. For example, Con Edison separated asset vulnerabilities to 

different climate impacts into three categories: “Primary,” “Secondary,” and 
“Low”

Con Edison’s Climate Vulnerability Strategy

Capacity Expansion Modeling

https://www.pnnl.gov/sites/default/files/media/file/Final%20Report%206_7_2023.pdf
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